nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(2|0)
  • Verhalten für x → -∞: f(x) → ∞
  • Verhalten für x → ∞: f(x) → 0

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x -2 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x. Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu: f(x)= ( x -2 ) · e -x . Weil jetzt aber für x → -∞ : f(x) → -∞ streben würde, es ja aber gegen +∞ streben soll, spiegeln wir einfach die Funktion an der x-Achse, indem wir den Term mit -1 multiplizieren und erhalten so:
f(x)= - ( x -2 ) · e -x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 6 -5 x 4 +4 x 2 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 6 -5 x 4 +4 x 2 = 0
x 2 ( x 4 -5 x 2 +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -5 x 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = 1

x 2 = 1 | 2
x4 = - 1 = -1
x5 = 1 = 1

L={ -2 ; -1 ; 0; 1 ; 2 }

0 ist 2-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Somit gilt für die faktorisierte Darstellung:

f(x)= x 2 · ( x +2 ) · ( x -2 ) · ( x +1 ) · ( x -1 ) = x 6 -5 x 4 +4 x 2

Anwendungen

Beispiel:

Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit f(t)= 25 t 2 · e -0,5t beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 2 Dezimeter hoch.

  1. Bestimme die maximale Wachstumsgeschwindigkeit des Baums.
  2. Wann nimmt die Wachstumsgeschwindigkeit am stärksten ab?
  3. Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert des Maximums (HP)

    Gesucht ist der y-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Hochpunkt (4 |54.13) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 25 · 0 2 · e -0,50 = 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) → 0.

    Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.

    54.13 ist also der größte Wert der Funktion.


  2. t-Wert bei der stärksten Abnahme

    Gesucht ist der t-Wert des Tiefpunkt der Ableitung.

    Dazu berechnen wir erstmal die Ableitungsfunktion f':

    f'(t)= 25 · 2x · e -0,5x +25 x 2 · e -0,5x · ( -0,5 )

    = e -0,5x ( -12,5 x 2 +50x )

    Wir berechnen also die Extremstellen von f':

    Detail-Rechnung für den Tiefpunkt der Ableitung (6,8284|-7.94) einblenden

    Randwertuntersuchung

    Da ja ein minimaler Wert, also ein globales Minimum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch kleinere Werte als beim lokalen Minimum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) = e -0,50 · ( -12,5 0 2 +500 ) = 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f'(t) → 0.

    Weil die Werte an den Rändern größer als am Tiefpunkt sind, ist das lokale Minimum also ein globales Minimum von f'.

    Bei t = 6,8284 ist also der kleinste Wert der Ableitungsfunktion.

  3. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 25 t 2 · e -0,5t 25 · 0

    Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch

    Das langfristige Verhalten der Funktionswerte geht also gegen 0.