Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 6 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass kein einziges mal in den grünen Bereich gedreht wird.
Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) q = 1 - 0,6 = beträgt, muss die Wahrscheinlichkeit für 6 Nicht-Treffer bei 6 Versuchen P = ≈ 0.0041 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 210
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 6 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 6er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 6er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 6er-Gruppe möglich. Es gibt also 6 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 652458240 Möglichkeiten für nach Reihenfolge sortierte 6er-Gruppen durch die 720 Möglichkeiten, die 6er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 906192 Möglichkeiten für 6er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 26! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
906192 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4 dabei ist?
Es gibt insgesamt = = = 27405 verschiedene Möglichkeiten, die 4 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 4 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 4 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 4 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 29 Zahlen (alle außer der 4) zu setzen, also = = = 3654.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.1333, also ca. 13.33%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 55% entsteht. Es wird eine Stichprobe der Menge 49 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 29 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=49 und p=0.55.
= =0.096874550836577≈ 0.0969(TI-Befehl: binompdf(49,0.55,29))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
k | P(X = k) | P(X ≤ k) |
---|---|---|
0 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
1 | ≈ 0.1 | ≈ 0.02 + 0.1 = 0.12 |
2 | ≈ 0.21 | ≈ 0.12 + 0.21 = 0.33 |
3 | ≈ 0.25 | ≈ 0.33 + 0.25 = 0.58 |
Während P(X ≤ 2) = 0.33 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 3) = 0.58 klar darüber.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,19 entsteht. Es wird eine Stichprobe der Menge 81 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 18 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=81 und p=0.19.
= + + +... + = 0.81273270089696 ≈ 0.8127(TI-Befehl: binomcdf(81,0.19,18))
Binomialverteilung X>=k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,69. Wie groß ist die Wahrscheinlichkeit dass er von 59 Versuchen mehr als 45 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=59 und p=0.69.
(TI-Befehl: 1-binomcdf(59,0.69,45))
Binomialverteilung l < X < k
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 98 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 17, aber weniger als 30 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=98 und p=0.25.
=
(TI-Befehl: binomcdf(98,0.25,29) - binomcdf(98,0.25,16))