Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim zweiten Drehen der grüne Bereich erzielt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = . Da ja der Treffer genau im zweiten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅0,7⋅⋅⋅ = ≈ 0.0057 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 3)
= (gekürzt mit 2)
= 20
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 4 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 863040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 35960 Möglichkeiten für 4er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 28! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
35960 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 20, die 21 und die 28 dabei sind?
Es gibt insgesamt = = = 2035800 verschiedene Möglichkeiten, die 7 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 20, die 21 und die 28 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 30 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 20, der 21 und der 28 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 27 Zahlen (alle außer der 20, der 21 und der 28) zu setzen, also = = = 17550.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0086, also ca. 0.86%.
Formel v. Bernoulli
Beispiel:
Ein Würfel wird 58 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 4 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=58 und p=.
= =0.017348024863586≈ 0.0173(TI-Befehl: binompdf(58,1/6,4))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.04 | ≈ 0.01 + 0.04 = 0.05 |
| 2 | ≈ 0.11 | ≈ 0.05 + 0.11 = 0.16 |
| 3 | ≈ 0.2 | ≈ 0.16 + 0.2 = 0.36 |
| 4 | ≈ 0.24 | ≈ 0.36 + 0.24 = 0.6 |
Während P(X ≤ 3) = 0.36 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 4) = 0.6 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 49 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 25 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=49 und p=0.5.
= + + +... + = 0.61227517265922 ≈ 0.6123(TI-Befehl: binomcdf(49,0.5,25))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 5 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 24 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=24 und p=0.125.
(TI-Befehl: 1-binomcdf(24,0.125,4))
Binomialverteilung l < X < k
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,45 entsteht. Es wird eine Stichprobe der Menge 61 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 21 und höchstens 27 beträgt?
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=61 und p=0.45.
=
(TI-Befehl: binomcdf(61,0.45,27) - binomcdf(61,0.45,20))
