nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass keine einzige "6" gewürfelt wird.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass keine "6" gewürfelt wird) q = 1 - 1 6 = 5 6 beträgt, muss die Wahrscheinlichkeit für 4 Nicht-Treffer bei 4 Versuchen P = ( 5 6 ) 4 ≈ 0.4823 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 16 15 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 16 15 ) = 16! 15! ⋅ (16 - 15)! = 16! 15! ⋅ 1! = 16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
15! = 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 16 15 ) = 16 1

= 16

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 22-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 22 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 21 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 20 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 2221201918 = 3160080 Möglichkeiten, die 22 Möglichkeiten (Schülerinnen) auf die 5 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 3160080 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 3160080 120 = 26334 Möglichkeiten für 5er-Gruppen, die aus 22 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 2221201918 54321 könnte man mit 17! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

26334 = 2221201918 54321 = 2221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 54321 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 22! 5! ⋅ 17! = ( 22 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 19 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 6 ) = 20! 6! ⋅ 14! = 20⋅19⋅18⋅17⋅16⋅15 6⋅5⋅4⋅3⋅2⋅1 = 38760 verschiedene Möglichkeiten, die 6 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 19 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 19 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 19 Zahlen (alle außer der 19) zu setzen, also ( 19 5 ) = 19! 5! ⋅ 14! = 19⋅18⋅17⋅16⋅15 5⋅4⋅3⋅2⋅1 = 11628.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 11628 38760 ≈ 0.3, also ca. 30%.

Formel v. Bernoulli

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,05. Wie groß ist die Wahrscheinlichkeit dass er von 30 Versuchen genau 0 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=30 und p=0.05.

P0.0530 (X=0) = ( 30 0 ) 0.050 0.9530 =0.21463876394294≈ 0.2146
(TI-Befehl: binompdf(30,0.05,0))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.7.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.7 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.7 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.7=0.3 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.01≈ 0 + 0.01 = 0.01
1≈ 0.04≈ 0.01 + 0.04 = 0.05
2≈ 0.11≈ 0.05 + 0.11 = 0.16
3≈ 0.19≈ 0.16 + 0.19 = 0.35
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.16 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 3) = 0.35 klar darüber.

Oder andersrum: P(X ≥ 3) = 1 - P(X ≤ 2) = 0.84 (die Summe der blauen Säulenhöhen von 3 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.7, während P(X ≥ 4) = 1 - P(X ≤ 3) = 0.65 (die Summe der Säulenhöhen von 4 bis 14) klar darunter liegt.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 48 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 28 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=48 und p=0.5.

P0.548 (X28) = P0.548 (X=0) + P0.548 (X=1) + P0.548 (X=2) +... + P0.548 (X=28) = 0.90329367356903 ≈ 0.9033
(TI-Befehl: binomcdf(48,0.5,28))

Binomialverteilung X>=k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,67. Wie groß ist die Wahrscheinlichkeit dass er von 74 Versuchen mindestens 44 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=74 und p=0.67.

...
41
42
43
44
45
46
...

P0.6774 (X44) = 1 - P0.6774 (X43) = 0.9317
(TI-Befehl: 1-binomcdf(74,0.67,43))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 73% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 46 Versuchen mindestens 30 und weniger als 35 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=46 und p=0.73.

P0.7346 (30X34) =

...
27
28
29
30
31
32
33
34
35
36
...

P0.7346 (X34) - P0.7346 (X29) ≈ 0.6108 - 0.0904 ≈ 0.5204
(TI-Befehl: binomcdf(46,0.73,34) - binomcdf(46,0.73,29))