Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,3 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass nur beim dritten Chip kein Defekt vorliegt.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,3, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,3 = . Da ja der Nicht-Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = 0,3⋅0,3⋅⋅0,3⋅0,3⋅0,3 = ≈ 0.0017 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
15! = 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 16
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 20-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 20 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 19 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 18 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 116280 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 4845 Möglichkeiten für 4er-Gruppen, die aus 20 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 16! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
4845 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 19 und die 24 dabei sind?
Es gibt insgesamt = = = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 19 und die 24 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 19 und der 24 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 28 Zahlen (alle außer der 19 und der 24) zu setzen, also = = = 376740.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0644, also ca. 6.44%.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,65. Wie groß ist die Wahrscheinlichkeit dass er von 40 Versuchen genau 27 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=40 und p=0.65.
= =0.12645242628451≈ 0.1265(TI-Befehl: binompdf(40,0.65,27))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.
Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 1 | ≈ 0.12 | ≈ 0.03 + 0.12 = 0.15 |
| 2 | ≈ 0.23 | ≈ 0.15 + 0.23 = 0.38 |
Während P(X ≤ 1) = 0.15 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 2) = 0.38 klar darüber.
Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.85 (die Summe der blauen Säulenhöhen von 2 bis 10) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.62 (die Summe der Säulenhöhen von 3 bis 10) klar darunter liegt.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
Ein Fortbildungsteilnehmer ermüdet mit einer Wahrscheinlichkeit von 60%. An einer Fortbildung nehmen 100 Personen teil. Wie groß ist die Wahrscheinlichkeit, dass höchstens 55 Personen ermüden?
Die Zufallsgröße X gibt die Anzahl der ermüdeten Personen an. X ist binomialverteilt mit n=100 und p=0.6.
= + + +... + = 0.17890163272311 ≈ 0.1789(TI-Befehl: binomcdf(100,0.6,55))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,9. Wie groß ist die Wahrscheinlichkeit bei 39 Versuchen mehr als 35 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=39 und p=0.9.
(TI-Befehl: 1-binomcdf(39,0.9,35))
Binomialverteilung l < X < k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,25. Wie groß ist die Wahrscheinlichkeit bei 50 Versuchen, mehr als 13 mal und höchstens 15 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=50 und p=0.25.
=
(TI-Befehl: binomcdf(50,0.25,15) - binomcdf(50,0.25,13))
