Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei 4 mal in den grünen Bereich gedreht wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = . Wenn genau 4 Treffer unter den 5 Versuchen sein sollen, bedeutet das doch, dass es genau einen Nicht-Treffer unter den 5 Versuchen geben muss. Hier gibt es nun mehrere Möglichkeiten, wann dieser Nicht-Treffer eintritt:
NichtTreffer - Treffer - Treffer - Treffer - Treffer (also der NichtTreffer im 1-ten Versuch)
Treffer - NichtTreffer - Treffer - Treffer - Treffer (also der NichtTreffer im 2-ten Versuch)
Treffer - Treffer - NichtTreffer - Treffer - Treffer (also der NichtTreffer im 3-ten Versuch)
Treffer - Treffer - Treffer - NichtTreffer - Treffer (also der NichtTreffer im 4-ten Versuch)
Treffer - Treffer - Treffer - Treffer - NichtTreffer (also der NichtTreffer im 5-ten Versuch)
Bei jedem dieser 5 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 5 Fälle gilt somit P = ≈ 0.2592 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 7
Binomialkoeffizient Anwendungen
Beispiel:
Eine Eisdiele bietet 11 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?
Für die erste Stelle ist jede Eissorte möglich. Es gibt also 11 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 10 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 110 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 55 Möglichkeiten für 2er-Gruppen, die aus 11 Elementen (Eissorten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 9! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
55 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 15 dabei ist?
Es gibt insgesamt = = = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 15 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 15 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 29 Zahlen (alle außer der 15) zu setzen, also = = = 1560780.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.2667, also ca. 26.67%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 10% entsteht. Es wird eine Stichprobe der Menge 30 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 4 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=30 und p=0.1.
= =0.17706594917426≈ 0.1771(TI-Befehl: binompdf(30,0.1,4))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.65.
Wenn P(X ≥ k) ≥ 0.65 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.65 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.65=0.35 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 2 | ≈ 0.09 | ≈ 0.03 + 0.09 = 0.12 |
| 3 | ≈ 0.18 | ≈ 0.12 + 0.18 = 0.3 |
| 4 | ≈ 0.24 | ≈ 0.3 + 0.24 = 0.54 |
Während P(X ≤ 3) = 0.3 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 4) = 0.54 klar darüber.
Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.7 (die Summe der blauen Säulenhöhen von 4 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.65, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.46 (die Summe der Säulenhöhen von 5 bis 11) klar darunter liegt.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,25 entsteht. Es wird eine Stichprobe der Menge 63 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 22 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=63 und p=0.25.
= + + +... + = 0.97186493582216 ≈ 0.9719(TI-Befehl: binomcdf(63,0.25,22))
Binomialverteilung X>=k
Beispiel:
Ein Zufallsexperiment wird 81 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,45.
Wie groß ist dabei die Wahrscheinlichkeit, mehr als 37 Treffer zu erzielen?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=81 und p=0.45.
(TI-Befehl: 1-binomcdf(81,0.45,37))
Binomialverteilung l < X < k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,55. Wie groß ist die Wahrscheinlichkeit bei 71 Versuchen, mehr als 36 mal und höchstens 39 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=71 und p=0.55.
=
(TI-Befehl: binomcdf(71,0.55,39) - binomcdf(71,0.55,36))
