nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,2 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass beim vierten Chip ein Defekt vorliegt.

Lösung einblenden

Da hier ja nur eine Aussage über den 4-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 4-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,2 ≈ 0.2 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 11 6 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 11 6 ) = 11! 6! ⋅ (11 - 6)! = 11! 6! ⋅ 5! = 11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 6⋅5⋅4⋅3⋅2⋅1 ⋅ 5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 11 6 ) = 11⋅10⋅9⋅8⋅7 5⋅4⋅3⋅2⋅1

= 11⋅2⋅9⋅8⋅7 4⋅3⋅2⋅1 (gekürzt mit 5)

= 11⋅2⋅9⋅2⋅7 3⋅2⋅1 (gekürzt mit 4)

= 11⋅2⋅3⋅2⋅7 2⋅1 (gekürzt mit 3)

= 11⋅3⋅2⋅7 1 (gekürzt mit 2)

= 462

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 9 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 98 = 72 Möglichkeiten, die 9 Möglichkeiten (Eissorten) auf die 2 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 72 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 72 2 = 36 Möglichkeiten für 2er-Gruppen, die aus 9 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 98 21 könnte man mit 7! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

36 = 98 21 = 98 7 6 5 4 3 2 1 21 7 6 5 4 3 2 1 = 9! 2! ⋅ 7! = ( 9 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 1 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 4 ) = 20! 4! ⋅ 16! = 20⋅19⋅18⋅17 4⋅3⋅2⋅1 = 4845 verschiedene Möglichkeiten, die 4 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 1 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 1 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 19 Zahlen (alle außer der 1) zu setzen, also ( 19 3 ) = 19! 3! ⋅ 16! = 19⋅18⋅17 3⋅2⋅1 = 969.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 969 4845 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 39-mal gewürfelt. Es werden hierbei 4 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 4 6er bei 39 Würfen.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=39 und p= 1 6 .

P 1 6 39 (X=4) = ( 39 4 ) ( 1 6 )4 ( 5 6 )35 =0.10744657431237≈ 0.1074
(TI-Befehl: binompdf(39,1/6,4))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.05≈ 0.01 + 0.05 = 0.06
3≈ 0.11≈ 0.06 + 0.11 = 0.17
4≈ 0.18≈ 0.17 + 0.18 = 0.35
5≈ 0.22≈ 0.35 + 0.22 = 0.57
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.35 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 5) = 0.57 klar darüber.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Ein Würfel wird 37 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass nicht öfter als 4 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=37 und p= 1 6 .

P 1 6 37 (X4) = P 1 6 37 (X=0) + P 1 6 37 (X=1) + P 1 6 37 (X=2) +... + P 1 6 37 (X=4) = 0.23851517041142 ≈ 0.2385
(TI-Befehl: binomcdf(37,1/6,4))

Binomialverteilung X>=k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 49 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so 7 oder gar noch mehr Fragen richtig beantwortet hat?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=49 und p=0.25.

...
4
5
6
7
8
9
...

P0.2549 (X7) = 1 - P0.2549 (X6) = 0.977
(TI-Befehl: 1-binomcdf(49,0.25,6))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 82% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 93 Versuchen mindestens 69 und weniger als 81 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=93 und p=0.82.

P0.8293 (69X80) =

...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
...

P0.8293 (X80) - P0.8293 (X68) ≈ 0.8761 - 0.0219 ≈ 0.8542
(TI-Befehl: binomcdf(93,0.82,80) - binomcdf(93,0.82,68))