nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 4 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der dritten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 3-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 3-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,7 ≈ 0.7 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 11 6 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 11 6 ) = 11! 6! ⋅ (11 - 6)! = 11! 6! ⋅ 5! = 11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 6⋅5⋅4⋅3⋅2⋅1 ⋅ 5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 11 6 ) = 11⋅10⋅9⋅8⋅7 5⋅4⋅3⋅2⋅1

= 11⋅2⋅9⋅8⋅7 4⋅3⋅2⋅1 (gekürzt mit 5)

= 11⋅2⋅9⋅2⋅7 3⋅2⋅1 (gekürzt mit 4)

= 11⋅2⋅3⋅2⋅7 2⋅1 (gekürzt mit 3)

= 11⋅3⋅2⋅7 1 (gekürzt mit 2)

= 462

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 2 Schülerinnen. Diese möchte sie zufällig aus der 18-köpfigen Sportgruppe losen. Wie viele verschiedene 2er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 1817 = 306 Möglichkeiten, die 18 Möglichkeiten (Schülerinnen) auf die 2 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 306 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 306 2 = 153 Möglichkeiten für 2er-Gruppen, die aus 18 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 1817 21 könnte man mit 16! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

153 = 1817 21 = 1817 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 21 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 18! 2! ⋅ 16! = ( 18 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4, die 19 und die 26 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 30 6 ) = 30! 6! ⋅ 24! = 30⋅29⋅28⋅27⋅26⋅25 6⋅5⋅4⋅3⋅2⋅1 = 593775 verschiedene Möglichkeiten, die 6 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 4, die 19 und die 26 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 30 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 4, der 19 und der 26 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 27 Zahlen (alle außer der 4, der 19 und der 26) zu setzen, also ( 27 3 ) = 27! 3! ⋅ 24! = 27⋅26⋅25 3⋅2⋅1 = 2925.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 2925 593775 ≈ 0.0049, also ca. 0.49%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 25% entsteht. Es wird eine Stichprobe der Menge 28 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 10 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=28 und p=0.25.

P0.2528 (X=10) = ( 28 10 ) 0.2510 0.7518 =0.070556917161635≈ 0.0706
(TI-Befehl: binompdf(28,0.25,10))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.25.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.01≈ 0 + 0.01 = 0.01
1≈ 0.04≈ 0.01 + 0.04 = 0.05
2≈ 0.11≈ 0.05 + 0.11 = 0.16
3≈ 0.2≈ 0.16 + 0.2 = 0.36
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.16 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 3) = 0.36 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,16 entsteht. Es wird eine Stichprobe der Menge 51 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 10 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=51 und p=0.16.

P0.1651 (X10) = P0.1651 (X=0) + P0.1651 (X=1) + P0.1651 (X=2) +... + P0.1651 (X=10) = 0.81701766235322 ≈ 0.817
(TI-Befehl: binomcdf(51,0.16,10))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,17 entsteht. Es wird eine Stichprobe der Menge 46 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 3 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=46 und p=0.17.

0
1
2
3
4
5
...

P0.1746 (X3) = 1 - P0.1746 (X2) = 0.9898
(TI-Befehl: 1-binomcdf(46,0.17,2))

Binomialverteilung l < X < k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 7 und höchstens 13 Glückskekse mit einer Peproni zu erwischen, wenn man 95 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=95 und p=0.125.

P0.12595 (8X13) =

...
5
6
7
8
9
10
11
12
13
14
15
...

P0.12595 (X13) - P0.12595 (X7) ≈ 0.7029 - 0.0808 ≈ 0.6221
(TI-Befehl: binomcdf(95,0.125,13) - binomcdf(95,0.125,7))