Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass keine einzige "6" gewürfelt wird.
Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass keine "6" gewürfelt wird) q = 1 - = beträgt, muss die Wahrscheinlichkeit für 4 Nicht-Treffer bei 4 Versuchen P = ≈ 0.4823 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
7! = 7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 1
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 4 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 863040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 35960 Möglichkeiten für 4er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 28! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
35960 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 12 dabei ist?
Es gibt insgesamt = = = 6724520 verschiedene Möglichkeiten, die 7 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 12 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 12 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 34 Zahlen (alle außer der 12) zu setzen, also = = = 1344904.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.2, also ca. 20%.
Formel v. Bernoulli
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 85 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 68 mal eine blaue Kugel gezogen wird?
Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=85 und p=0.7.
= =0.012078264308364≈ 0.0121(TI-Befehl: binompdf(85,0.7,68))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.35.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.04 | ≈ 0 + 0.04 = 0.04 |
| 1 | ≈ 0.15 | ≈ 0.04 + 0.15 = 0.19 |
| 2 | ≈ 0.26 | ≈ 0.19 + 0.26 = 0.45 |
Während P(X ≤ 1) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 2) = 0.45 klar darüber.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 13 Glückskekse mit einer Peproni zu erwischen, wenn man 56 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=56 und p=.
= + + +... + = 0.99217466270657 ≈ 0.9922(TI-Befehl: binomcdf(56,1/8,13))
Binomialverteilung X>=k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,83. Wie groß ist die Wahrscheinlichkeit dass er von 50 Versuchen mehr als 41 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.83.
(TI-Befehl: 1-binomcdf(50,0.83,41))
Binomialverteilung l < X < k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,65. Wie groß ist die Wahrscheinlichkeit bei 87 Versuchen, mehr als 58 mal und höchstens 64 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=87 und p=0.65.
=
(TI-Befehl: binomcdf(87,0.65,64) - binomcdf(87,0.65,58))
