nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,25 Ausschuss. Es werden nacheinander 3 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass nur beim ersten Chip ein Defekt vorliegt.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,25, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,25 = 0,75. Da ja der Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,25⋅0,750,75 = 0,25 · 0,75 2 ≈ 0.1406 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 21 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 21 2 ) = 21! 2! ⋅ (21 - 2)! = 21! 2! ⋅ 19! = 21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
19! = 19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 21 2 ) = 21⋅20 2⋅1

= 21⋅10 1 (gekürzt mit 2)

= 210

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8765 = 1680 Möglichkeiten, die 8 Möglichkeiten (Eissorten) auf die 4 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 1680 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 1680 24 = 70 Möglichkeiten für 4er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 8765 4321 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

70 = 8765 4321 = 8765 4 3 2 1 4321 4 3 2 1 = 8! 4! ⋅ 4! = ( 8 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 7 ) = 20! 7! ⋅ 13! = 20⋅19⋅18⋅17⋅16⋅15⋅14 7⋅6⋅5⋅4⋅3⋅2⋅1 = 77520 verschiedene Möglichkeiten, die 7 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 4 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 4 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 19 Zahlen (alle außer der 4) zu setzen, also ( 19 6 ) = 19! 6! ⋅ 13! = 19⋅18⋅17⋅16⋅15⋅14 6⋅5⋅4⋅3⋅2⋅1 = 27132.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 27132 77520 ≈ 0.35, also ca. 35%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 5% entsteht. Es wird eine Stichprobe der Menge 24 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 2 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=24 und p=0.05.

P0.0524 (X=2) = ( 24 2 ) 0.052 0.9522 =0.22323814603186≈ 0.2232
(TI-Befehl: binompdf(24,0.05,2))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.06≈ 0.02 + 0.06 = 0.08
3≈ 0.14≈ 0.08 + 0.14 = 0.22
4≈ 0.21≈ 0.22 + 0.21 = 0.43
5≈ 0.23≈ 0.43 + 0.23 = 0.66
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.43 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 5) = 0.66 klar darüber.

Oder andersrum: P(X ≥ 5) = 1 - P(X ≤ 4) = 0.57 (die Summe der blauen Säulenhöhen von 5 bis 12) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 6) = 1 - P(X ≤ 5) = 0.34 (die Summe der Säulenhöhen von 6 bis 12) klar darunter liegt.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 20 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 12 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=20 und p=0.5.

P0.520 (X<12) = P0.520 (X11) = P0.520 (X=0) + P0.520 (X=1) + P0.520 (X=2) +... + P0.520 (X=11) = 0.74827766418457 ≈ 0.7483
(TI-Befehl: binomcdf(20,0.5,11))

Binomialverteilung X>=k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 98 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so 31 oder gar noch mehr Fragen richtig beantwortet hat?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=98 und p=0.25.

...
28
29
30
31
32
33
...

P0.2598 (X31) = 1 - P0.2598 (X30) = 0.0832
(TI-Befehl: 1-binomcdf(98,0.25,30))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 81% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 68 Versuchen mindestens 56 und weniger als 58 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=68 und p=0.81.

P0.8168 (56X57) =

...
53
54
55
56
57
58
59
...

P0.8168 (X57) - P0.8168 (X55) ≈ 0.7684 - 0.5389 ≈ 0.2295
(TI-Befehl: binomcdf(68,0.81,57) - binomcdf(68,0.81,55))