nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,2 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips fehlerfrei funktionieren.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) q = 1 - 0,2 = 0,8 beträgt, muss die Wahrscheinlichkeit für 6 Nicht-Treffer bei 6 Versuchen P = 0,8 6 ≈ 0.2621 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 1 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 1 ) = 9! 1! ⋅ (9 - 1)! = 9! 1! ⋅ 8! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 1 ⋅ 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 9 1 ) = 9 1

= 9

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87654 = 6720 Möglichkeiten, die 8 Möglichkeiten (SchülerInnen) auf die 5 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6720 120 = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 87654 54321 könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

56 = 87654 54321 = 87654 3 2 1 54321 3 2 1 = 8! 5! ⋅ 3! = ( 8 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 8, die 12 und die 22 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 25 8 ) = 25! 8! ⋅ 17! = 25⋅24⋅23⋅22⋅21⋅20⋅19⋅18 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 8, die 12 und die 22 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 8, der 12 und der 22 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 22 Zahlen (alle außer der 8, der 12 und der 22) zu setzen, also ( 22 5 ) = 22! 5! ⋅ 17! = 22⋅21⋅20⋅19⋅18 5⋅4⋅3⋅2⋅1 = 26334.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 26334 1081575 ≈ 0.0243, also ca. 2.43%.

Formel v. Bernoulli

Beispiel:

Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 82-mal gewürfelt. Es werden hierbei 16 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 16 6er bei 82 Würfen.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=82 und p= 1 6 .

P 1 6 82 (X=16) = ( 82 16 ) ( 1 6 )16 ( 5 6 )66 =0.087932731722222≈ 0.0879
(TI-Befehl: binompdf(82,1/6,16))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.25.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.1≈ 0.02 + 0.1 = 0.12
2≈ 0.21≈ 0.12 + 0.21 = 0.33
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.12 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 2) = 0.33 klar darüber.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 74 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 33 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=74 und p=0.5.

P0.574 (X<33) = P0.574 (X32) = P0.574 (X=0) + P0.574 (X=1) + P0.574 (X=2) +... + P0.574 (X=32) = 0.14770664032784 ≈ 0.1477
(TI-Befehl: binomcdf(74,0.5,32))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,18 entsteht. Es wird eine Stichprobe der Menge 41 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 10 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=41 und p=0.18.

...
7
8
9
10
11
12
...

P0.1841 (X10) = 1 - P0.1841 (X9) = 0.191
(TI-Befehl: 1-binomcdf(41,0.18,9))

Binomialverteilung l < X < k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 77 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 12, aber weniger als 20 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=77 und p=0.25.

P0.2577 (12X19) =

...
9
10
11
12
13
14
15
16
17
18
19
20
21
...

P0.2577 (X19) - P0.2577 (X11) ≈ 0.5349 - 0.0166 ≈ 0.5183
(TI-Befehl: binomcdf(77,0.25,19) - binomcdf(77,0.25,11))