Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der dritten Drehung der grüne Bereich erzielt wird.
Da hier ja nur eine Aussage über den 3-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 3-te Versuch
betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)
Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = ≈ 0.6 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= 1
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 5 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 24165120 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 201376 Möglichkeiten für 5er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 27! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
201376 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 14 und die 37 dabei sind?
Es gibt insgesamt = = = 3838380 verschiedene Möglichkeiten, die 6 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 6 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 14 und die 37 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 14 und der 37 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 38 Zahlen (alle außer der 14 und der 37) zu setzen, also = = = 73815.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0192, also ca. 1.92%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 45% entsteht. Es wird eine Stichprobe der Menge 32 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 15 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=32 und p=0.45.
= =0.13707461944156≈ 0.1371(TI-Befehl: binompdf(32,0.45,15))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.5.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 2 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 3 | ≈ 0.13 | ≈ 0.06 + 0.13 = 0.19 |
| 4 | ≈ 0.21 | ≈ 0.19 + 0.21 = 0.4 |
| 5 | ≈ 0.24 | ≈ 0.4 + 0.24 = 0.64 |
Während P(X ≤ 4) = 0.4 also noch klar unter der geforderten Wahrscheinlichkeit von 0.5 liegt, ist P(X ≤ 5) = 0.64 klar darüber.
Somit ist das gesuchte k = 5.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 41 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 25 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=41 und p=0.5.
= + + +... + = 0.94136239702129 ≈ 0.9414(TI-Befehl: binomcdf(41,0.5,25))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 50 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 10 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=50 und p=.
(TI-Befehl: 1-binomcdf(50,,9))
Binomialverteilung l < X < k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 79% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 45 Versuchen mindestens 31 und weniger als 39 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=45 und p=0.79.
=
(TI-Befehl: binomcdf(45,0.79,38) - binomcdf(45,0.79,30))
