nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass im vierten Wurf keine "6" gewürfelt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 4-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 4-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - 1 6 = 5 6 ≈ 0.8333 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 7 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 7 ) = 9! 7! ⋅ (9 - 7)! = 9! 7! ⋅ 2! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
7! = 7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 9 7 ) = 9⋅8 2⋅1

= 9⋅4 1 (gekürzt mit 2)

= 36

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 6 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 323130292827 = 652458240 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 6 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 6er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 6er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 6er-Gruppe möglich. Es gibt also 6 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 654321 = 720 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 6er-Gruppe.

Wir müssen deswegen die 652458240 Möglichkeiten für nach Reihenfolge sortierte 6er-Gruppen durch die 720 Möglichkeiten, die 6er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 652458240 720 = 906192 Möglichkeiten für 6er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 323130292827 654321 könnte man mit 26! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

906192 = 323130292827 654321 = 323130292827 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 654321 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 6! ⋅ 26! = ( 32 6 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 23 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 25 5 ) = 25! 5! ⋅ 20! = 25⋅24⋅23⋅22⋅21 5⋅4⋅3⋅2⋅1 = 53130 verschiedene Möglichkeiten, die 5 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 5 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 23 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 23 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 24 Zahlen (alle außer der 23) zu setzen, also ( 24 4 ) = 24! 4! ⋅ 20! = 24⋅23⋅22⋅21 4⋅3⋅2⋅1 = 10626.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 10626 53130 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 56 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 36 mal eine blaue Kugel gezogen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=56 und p=0.7.

P0.756 (X=36) = ( 56 36 ) 0.736 0.320 =0.072637937971592≈ 0.0726
(TI-Befehl: binompdf(56,0.7,36))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.25.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.03≈ 0 + 0.03 = 0.03
1≈ 0.12≈ 0.03 + 0.12 = 0.15
2≈ 0.23≈ 0.15 + 0.23 = 0.38
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.15 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 2) = 0.38 klar darüber.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 20 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 11 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=20 und p=0.5.

P0.520 (X11) = P0.520 (X=0) + P0.520 (X=1) + P0.520 (X=2) +... + P0.520 (X=11) = 0.74827766418457 ≈ 0.7483
(TI-Befehl: binomcdf(20,0.5,11))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,22 entsteht. Es wird eine Stichprobe der Menge 100 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 18 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=100 und p=0.22.

...
15
16
17
18
19
20
...

P0.22100 (X18) = 1 - P0.22100 (X17) = 0.8625
(TI-Befehl: 1-binomcdf(100,0.22,17))

Binomialverteilung l < X < k

Beispiel:

Ein Würfel wird 61 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 3 mal, aber weniger als 12 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=61 und p= 1 6 .

P 1 6 61 (4X11) =

...
1
2
3
4
5
6
7
8
9
10
11
12
13
...

P 1 6 61 (X11) - P 1 6 61 (X3) ≈ 0.6872 - 0.0055 ≈ 0.6817
(TI-Befehl: binomcdf(61, 1 6 ,11) - binomcdf(61, 1 6 ,3))