nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal eine "6" gewürfelt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = 1 6 , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - 1 6 = 5 6 . Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer (also Treffer im 3-ten Versuch)

Bei jedem dieser 3 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 1 6 · ( 5 6 ) 2 .

Für die gesuchte Wahrscheinlichkeit aller 3 Fälle gilt somit P = 3 · 1 6 · ( 5 6 ) 2 ≈ 0.3472 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 6 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 6 2 ) = 6! 2! ⋅ (6 - 2)! = 6! 2! ⋅ 4! = 6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
4! = 4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 6 2 ) = 6⋅5 2⋅1

= 3⋅5 1 (gekürzt mit 2)

= 15

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 10987 = 5040 Möglichkeiten, die 10 Möglichkeiten (SchülerInnen) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 5040 24 = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 10987 4321 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

210 = 10987 4321 = 10987 6 5 4 3 2 1 4321 6 5 4 3 2 1 = 10! 4! ⋅ 6! = ( 10 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 6 ) = 20! 6! ⋅ 14! = 20⋅19⋅18⋅17⋅16⋅15 6⋅5⋅4⋅3⋅2⋅1 = 38760 verschiedene Möglichkeiten, die 6 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 5 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 5 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 19 Zahlen (alle außer der 5) zu setzen, also ( 19 5 ) = 19! 5! ⋅ 14! = 19⋅18⋅17⋅16⋅15 5⋅4⋅3⋅2⋅1 = 11628.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 11628 38760 ≈ 0.3, also ca. 30%.

Formel v. Bernoulli

Beispiel:

Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 37-mal gewürfelt. Es werden hierbei 2 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 2 6er bei 37 Würfen.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=37 und p= 1 6 .

P 1 6 37 (X=2) = ( 37 2 ) ( 1 6 )2 ( 5 6 )35 =0.031320458908869≈ 0.0313
(TI-Befehl: binompdf(37,1/6,2))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.06≈ 0.02 + 0.06 = 0.08
3≈ 0.14≈ 0.08 + 0.14 = 0.22
4≈ 0.2≈ 0.22 + 0.2 = 0.42
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.22 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 4) = 0.42 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 25 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 8 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=25 und p=0.25.

P0.2525 (X8) = P0.2525 (X=0) + P0.2525 (X=1) + P0.2525 (X=2) +... + P0.2525 (X=8) = 0.85056232961562 ≈ 0.8506
(TI-Befehl: binomcdf(25,0.25,8))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 85 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 12 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=85 und p= 1 6 .

...
9
10
11
12
13
14
...

P 1 6 85 (X12) = 1 - P 1 6 85 (X11) = 0.7773
(TI-Befehl: 1-binomcdf(85, 1 6 ,11))

Binomialverteilung l < X < k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 3 und höchstens 7 Glückskekse mit einer Peproni zu erwischen, wenn man 46 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=46 und p=0.125.

P0.12546 (4X7) =

...
1
2
3
4
5
6
7
8
9
...

P0.12546 (X7) - P0.12546 (X3) ≈ 0.7891 - 0.1568 ≈ 0.6323
(TI-Befehl: binomcdf(46,0.125,7) - binomcdf(46,0.125,3))