nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der dritten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 3-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 3-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,6 ≈ 0.6 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 5 5 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 5 5 ) = 5! 5! ⋅ (5 - 5)! = 5! 5! ⋅ 0! = 5⋅4⋅3⋅2⋅1 5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 5 5 ) = 1 1

= 1

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 5 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 3231302928 = 24165120 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 5 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 24165120 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 24165120 120 = 201376 Möglichkeiten für 5er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 3231302928 54321 könnte man mit 27! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

201376 = 3231302928 54321 = 3231302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 54321 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 5! ⋅ 27! = ( 32 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 14 und die 37 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 6 ) = 40! 6! ⋅ 34! = 40⋅39⋅38⋅37⋅36⋅35 6⋅5⋅4⋅3⋅2⋅1 = 3838380 verschiedene Möglichkeiten, die 6 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 14 und die 37 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 14 und der 37 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 38 Zahlen (alle außer der 14 und der 37) zu setzen, also ( 38 4 ) = 38! 4! ⋅ 34! = 38⋅37⋅36⋅35 4⋅3⋅2⋅1 = 73815.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 73815 3838380 ≈ 0.0192, also ca. 1.92%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 45% entsteht. Es wird eine Stichprobe der Menge 32 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 15 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=32 und p=0.45.

P0.4532 (X=15) = ( 32 15 ) 0.4515 0.5517 =0.13707461944156≈ 0.1371
(TI-Befehl: binompdf(32,0.45,15))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.5.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.05≈ 0.01 + 0.05 = 0.06
3≈ 0.13≈ 0.06 + 0.13 = 0.19
4≈ 0.21≈ 0.19 + 0.21 = 0.4
5≈ 0.24≈ 0.4 + 0.24 = 0.64
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.4 also noch klar unter der geforderten Wahrscheinlichkeit von 0.5 liegt, ist P(X ≤ 5) = 0.64 klar darüber.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 41 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 25 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=41 und p=0.5.

P0.541 (X25) = P0.541 (X=0) + P0.541 (X=1) + P0.541 (X=2) +... + P0.541 (X=25) = 0.94136239702129 ≈ 0.9414
(TI-Befehl: binomcdf(41,0.5,25))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 50 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 10 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=50 und p= 1 6 .

...
7
8
9
10
11
12
...

P 1 6 50 (X10) = 1 - P 1 6 50 (X9) = 0.317
(TI-Befehl: 1-binomcdf(50, 1 6 ,9))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 79% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 45 Versuchen mindestens 31 und weniger als 39 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=45 und p=0.79.

P0.7945 (31X38) =

...
28
29
30
31
32
33
34
35
36
37
38
39
40
...

P0.7945 (X38) - P0.7945 (X30) ≈ 0.8618 - 0.0373 ≈ 0.8245
(TI-Befehl: binomcdf(45,0.79,38) - binomcdf(45,0.79,30))