Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 6 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei 5 mal in den grünen Bereich gedreht wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = . Wenn genau 5 Treffer unter den 6 Versuchen sein sollen, bedeutet das doch, dass es genau einen Nicht-Treffer unter den 6 Versuchen geben muss. Hier gibt es nun mehrere Möglichkeiten, wann dieser Nicht-Treffer eintritt:
NichtTreffer - Treffer - Treffer - Treffer - Treffer - Treffer (also der NichtTreffer im 1-ten Versuch)
Treffer - NichtTreffer - Treffer - Treffer - Treffer - Treffer (also der NichtTreffer im 2-ten Versuch)
Treffer - Treffer - NichtTreffer - Treffer - Treffer - Treffer (also der NichtTreffer im 3-ten Versuch)
Treffer - Treffer - Treffer - NichtTreffer - Treffer - Treffer (also der NichtTreffer im 4-ten Versuch)
Treffer - Treffer - Treffer - Treffer - NichtTreffer - Treffer (also der NichtTreffer im 5-ten Versuch)
Treffer - Treffer - Treffer - Treffer - Treffer - NichtTreffer (also der NichtTreffer im 6-ten Versuch)
Bei jedem dieser 6 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 6 Fälle gilt somit P = ≈ 0.1866 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
4! = 4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 15
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 23-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 23 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 22 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 21 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 4037880 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 33649 Möglichkeiten für 5er-Gruppen, die aus 23 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 18! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
33649 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 8 und die 16 dabei sind?
Es gibt insgesamt = = = 593775 verschiedene Möglichkeiten, die 6 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 6 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 8 und die 16 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 30 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 8 und der 16 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 28 Zahlen (alle außer der 8 und der 16) zu setzen, also = = = 20475.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0345, also ca. 3.45%.
Formel v. Bernoulli
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 12 Glückskekse mit einer Peproni zu erwischen, wenn man 98 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=98 und p=.
= =0.12171465233116≈ 0.1217(TI-Befehl: binompdf(98,1/8,12))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.25.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.04 | ≈ 0.01 + 0.04 = 0.05 |
| 2 | ≈ 0.12 | ≈ 0.05 + 0.12 = 0.17 |
| 3 | ≈ 0.22 | ≈ 0.17 + 0.22 = 0.39 |
Während P(X ≤ 2) = 0.17 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 3) = 0.39 klar darüber.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,65. Wie groß ist die Wahrscheinlichkeit bei 74 Versuchen weniger als 45 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=74 und p=0.65.
= = + + +... + = 0.18939425769783 ≈ 0.1894(TI-Befehl: binomcdf(74,0.65,44))
Binomialverteilung X>=k
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,2 entsteht. Es wird eine Stichprobe der Menge 49 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 11 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=49 und p=0.2.
(TI-Befehl: 1-binomcdf(49,0.2,10))
Binomialverteilung l < X < k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 87% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 61 Versuchen mindestens 48 und weniger als 60 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=61 und p=0.87.
=
(TI-Befehl: binomcdf(61,0.87,59) - binomcdf(61,0.87,47))
