Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass nur im dritten Wurf eine "6" gewürfelt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - = . Da ja der Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅⋅ = ≈ 0.0965 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
39! = 39⋅38⋅37⋅36⋅35⋅34⋅33⋅32⋅31⋅30⋅29⋅28⋅27⋅26⋅25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 40
Binomialkoeffizient Anwendungen
Beispiel:
Eine Eisdiele bietet 10 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?
Für die erste Stelle ist jede Eissorte möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (Eissorten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
210 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 25 dabei ist?
Es gibt insgesamt = = = 18643560 verschiedene Möglichkeiten, die 7 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 25 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 25 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 39 Zahlen (alle außer der 25) zu setzen, also = = = 3262623.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.175, also ca. 17.5%.
Formel v. Bernoulli
Beispiel:
Ein Würfel wird 22 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 4 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=22 und p=.
= =0.21200538880341≈ 0.212(TI-Befehl: binompdf(22,1/6,4))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 2 | ≈ 0.09 | ≈ 0.03 + 0.09 = 0.12 |
| 3 | ≈ 0.18 | ≈ 0.12 + 0.18 = 0.3 |
| 4 | ≈ 0.24 | ≈ 0.3 + 0.24 = 0.54 |
| 5 | ≈ 0.22 | ≈ 0.54 + 0.22 = 0.76 |
Während P(X ≤ 4) = 0.54 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 5) = 0.76 klar darüber.
Somit ist das gesuchte k = 5.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,22 entsteht. Es wird eine Stichprobe der Menge 35 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 10 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=35 und p=0.22.
= + + +... + = 0.87180176900331 ≈ 0.8718(TI-Befehl: binomcdf(35,0.22,10))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,3. Wie groß ist die Wahrscheinlichkeit bei 92 Versuchen mindestens 29 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=92 und p=0.3.
(TI-Befehl: 1-binomcdf(92,0.3,28))
Binomialverteilung l < X < k
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 83 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 23, aber weniger als 25 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=83 und p=0.25.
=
(TI-Befehl: binomcdf(83,0.25,24) - binomcdf(83,0.25,22))
