nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 30%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal in den grünen Bereich gedreht wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,3, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,3 = 0,7. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 4-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 5-ten Versuch)

Bei jedem dieser 5 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,3 · 0,7 4 .

Für die gesuchte Wahrscheinlichkeit aller 5 Fälle gilt somit P = 5 · 0,3 · 0,7 4 ≈ 0.3602 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 2 ) = 10! 2! ⋅ (10 - 2)! = 10! 2! ⋅ 8! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 10 2 ) = 10⋅9 2⋅1

= 5⋅9 1 (gekürzt mit 2)

= 45

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 10 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109 = 90 Möglichkeiten, die 10 Möglichkeiten (Eissorten) auf die 2 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 90 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 90 2 = 45 Möglichkeiten für 2er-Gruppen, die aus 10 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 109 21 könnte man mit 8! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

45 = 109 21 = 109 8 7 6 5 4 3 2 1 21 8 7 6 5 4 3 2 1 = 10! 2! ⋅ 8! = ( 10 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 25 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 4 ) = 35! 4! ⋅ 31! = 35⋅34⋅33⋅32 4⋅3⋅2⋅1 = 52360 verschiedene Möglichkeiten, die 4 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 25 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 25 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 34 Zahlen (alle außer der 25) zu setzen, also ( 34 3 ) = 34! 3! ⋅ 31! = 34⋅33⋅32 3⋅2⋅1 = 5984.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 5984 52360 ≈ 0.1143, also ca. 11.43%.

Formel v. Bernoulli

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,9. Wie groß ist die Wahrscheinlichkeit bei 93 Versuchen genau 90 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=93 und p=0.9.

P0.993 (X=90) = ( 93 90 ) 0.990 0.13 =0.0098852297465199≈ 0.0099
(TI-Befehl: binompdf(93,0.9,90))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.05≈ 0.01 + 0.05 = 0.06
3≈ 0.13≈ 0.06 + 0.13 = 0.19
4≈ 0.21≈ 0.19 + 0.21 = 0.4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 4) = 0.4 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,75. Wie groß ist die Wahrscheinlichkeit bei 65 Versuchen weniger als 53 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=65 und p=0.75.

P0.7565 (X<53) = P0.7565 (X52) = P0.7565 (X=0) + P0.7565 (X=1) + P0.7565 (X=2) +... + P0.7565 (X=52) = 0.85974512794514 ≈ 0.8597
(TI-Befehl: binomcdf(65,0.75,52))

Binomialverteilung X>=k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 5 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 33 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=33 und p=0.125.

...
2
3
4
5
6
7
...

P0.12533 (X5) = 1 - P0.12533 (X4) = 0.397
(TI-Befehl: 1-binomcdf(33,0.125,4))

Binomialverteilung l < X < k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 9 und höchstens 16 Glückskekse mit einer Peproni zu erwischen, wenn man 95 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=95 und p=0.125.

P0.12595 (10X16) =

...
7
8
9
10
11
12
13
14
15
16
17
18
...

P0.12595 (X16) - P0.12595 (X9) ≈ 0.9196 - 0.2362 ≈ 0.6834
(TI-Befehl: binomcdf(95,0.125,16) - binomcdf(95,0.125,9))