nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,4 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau ein Chip defekt ist.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,4, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,4 = 0,6. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 4-ten Versuch)

Bei jedem dieser 4 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,4 · 0,6 3 .

Für die gesuchte Wahrscheinlichkeit aller 4 Fälle gilt somit P = 4 · 0,4 · 0,6 3 ≈ 0.3456 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 10 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 10 ) = 10! 10! ⋅ (10 - 10)! = 10! 10! ⋅ 0! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
10! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 10 10 ) = 1 1

= 1

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6543 = 360 Möglichkeiten, die 6 Möglichkeiten (SchülerInnen) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 360 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 360 24 = 15 Möglichkeiten für 4er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 6543 4321 könnte man mit 2! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 6543 4321 = 6543 2 1 4321 2 1 = 6! 4! ⋅ 2! = ( 6 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 19 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 25 7 ) = 25! 7! ⋅ 18! = 25⋅24⋅23⋅22⋅21⋅20⋅19 7⋅6⋅5⋅4⋅3⋅2⋅1 = 480700 verschiedene Möglichkeiten, die 7 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 19 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 19 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 24 Zahlen (alle außer der 19) zu setzen, also ( 24 6 ) = 24! 6! ⋅ 18! = 24⋅23⋅22⋅21⋅20⋅19 6⋅5⋅4⋅3⋅2⋅1 = 134596.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 134596 480700 ≈ 0.28, also ca. 28%.

Formel v. Bernoulli

Beispiel:

Ein Würfel wird 63 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 10 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=63 und p= 1 6 .

P 1 6 63 (X=10) = ( 63 10 ) ( 1 6 )10 ( 5 6 )53 =0.13440984625038≈ 0.1344
(TI-Befehl: binompdf(63,1/6,10))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.08≈ 0.02 + 0.08 = 0.1
2≈ 0.18≈ 0.1 + 0.18 = 0.28
3≈ 0.24≈ 0.28 + 0.24 = 0.52
4≈ 0.22≈ 0.52 + 0.22 = 0.74
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.52 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 4) = 0.74 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 97 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 34 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=97 und p=0.25.

P0.2597 (X34) = P0.2597 (X=0) + P0.2597 (X=1) + P0.2597 (X=2) +... + P0.2597 (X=34) = 0.99005386089524 ≈ 0.9901
(TI-Befehl: binomcdf(97,0.25,34))

Binomialverteilung X>=k

Beispiel:

Ein Zufallsexperiment wird 45 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.
Wie groß ist dabei die Wahrscheinlichkeit, mehr als 16 Treffer zu erzielen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=45 und p=0.3.

...
14
15
16
17
18
19
...

P0.345 (X>16) = P0.345 (X17) = 1 - P0.345 (X16) = 0.1642
(TI-Befehl: 1-binomcdf(45,0.3,16))

Binomialverteilung l < X < k

Beispiel:

Ein Würfel wird 83 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 11 mal, aber weniger als 18 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=83 und p= 1 6 .

P 1 6 83 (12X17) =

...
9
10
11
12
13
14
15
16
17
18
19
...

P 1 6 83 (X17) - P 1 6 83 (X11) ≈ 0.8592 - 0.2516 ≈ 0.6076
(TI-Befehl: binomcdf(83, 1 6 ,17) - binomcdf(83, 1 6 ,11))