Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 4 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jedes mal eine "6" gewürfelt wird.
Da die Wahrscheinlichkeit für einen Treffer (also hier, dass keine "6" gewürfelt wird) p = beträgt, muss die Wahrscheinlichkeit für 4 Treffer bei 4 Versuchen P = ≈ 0.0008 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 5)
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 252
Binomialkoeffizient Anwendungen
Beispiel:
Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?
Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
28 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 7, die 13 und die 20 dabei sind?
Es gibt insgesamt = = = 125970 verschiedene Möglichkeiten, die 8 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 7, die 13 und die 20 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 20 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 7, der 13 und der 20 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 17 Zahlen (alle außer der 7, der 13 und der 20) zu setzen, also = = = 6188.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0491, also ca. 4.91%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 25% entsteht. Es wird eine Stichprobe der Menge 82 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 28 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=82 und p=0.25.
= =0.016795626791329≈ 0.0168(TI-Befehl: binompdf(82,0.25,28))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 2 | ≈ 0.09 | ≈ 0.03 + 0.09 = 0.12 |
| 3 | ≈ 0.18 | ≈ 0.12 + 0.18 = 0.3 |
| 4 | ≈ 0.24 | ≈ 0.3 + 0.24 = 0.54 |
Während P(X ≤ 3) = 0.3 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 4) = 0.54 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 39 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 19 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=39 und p=0.5.
= = + + +... + = 0.37462931238042 ≈ 0.3746(TI-Befehl: binomcdf(39,0.5,18))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 8 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 42 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=42 und p=0.125.
(TI-Befehl: 1-binomcdf(42,0.125,7))
Binomialverteilung l < X < k
Beispiel:
Ein Zufallsexperiment wird 100 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 66, aber höchstens 72 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=100 und p=0.7.
=
(TI-Befehl: binomcdf(100,0.7,72) - binomcdf(100,0.7,65))
