nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 4 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass jedes mal in den grünen Bereich gedreht wird.

Lösung einblenden

Da die Wahrscheinlichkeit für einen Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) p = 0,6 beträgt, muss die Wahrscheinlichkeit für 4 Treffer bei 4 Versuchen P = 0,6 4 ≈ 0.1296 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 5 3 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 5 3 ) = 5! 3! ⋅ (5 - 3)! = 5! 3! ⋅ 2! = 5⋅4⋅3⋅2⋅1 3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 5 3 ) = 5⋅4 2⋅1

= 5⋅2 1 (gekürzt mit 2)

= 10

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 5 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 3231302928 = 24165120 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 5 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 24165120 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 24165120 120 = 201376 Möglichkeiten für 5er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 3231302928 54321 könnte man mit 27! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

201376 = 3231302928 54321 = 3231302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 54321 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 5! ⋅ 27! = ( 32 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 10, die 16 und die 19 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 20 7 ) = 20! 7! ⋅ 13! = 20⋅19⋅18⋅17⋅16⋅15⋅14 7⋅6⋅5⋅4⋅3⋅2⋅1 = 77520 verschiedene Möglichkeiten, die 7 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 10, die 16 und die 19 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 20 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 10, der 16 und der 19 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 17 Zahlen (alle außer der 10, der 16 und der 19) zu setzen, also ( 17 4 ) = 17! 4! ⋅ 13! = 17⋅16⋅15⋅14 4⋅3⋅2⋅1 = 2380.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 2380 77520 ≈ 0.0307, also ca. 3.07%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 15% entsteht. Es wird eine Stichprobe der Menge 92 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 19 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=92 und p=0.15.

P0.1592 (X=19) = ( 92 19 ) 0.1519 0.8573 =0.035699912093151≈ 0.0357
(TI-Befehl: binompdf(92,0.15,19))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.03≈ 0 + 0.03 = 0.03
1≈ 0.13≈ 0.03 + 0.13 = 0.16
2≈ 0.23≈ 0.16 + 0.23 = 0.39
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.16 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 2) = 0.39 klar darüber.

Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.84 (die Summe der blauen Säulenhöhen von 2 bis 12) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.61 (die Summe der Säulenhöhen von 3 bis 12) klar darunter liegt.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,4. Wie groß ist die Wahrscheinlichkeit bei 33 Versuchen weniger als 15 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=33 und p=0.4.

P0.433 (X<15) = P0.433 (X14) = P0.433 (X=0) + P0.433 (X=1) + P0.433 (X=2) +... + P0.433 (X=14) = 0.68097410772491 ≈ 0.681
(TI-Befehl: binomcdf(33,0.4,14))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 95 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 19 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=95 und p= 1 6 .

...
16
17
18
19
20
21
...

P 1 6 95 (X19) = 1 - P 1 6 95 (X18) = 0.2271
(TI-Befehl: 1-binomcdf(95, 1 6 ,18))

Binomialverteilung l < X < k

Beispiel:

Ein Würfel wird 92 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 10 mal, aber weniger als 23 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=92 und p= 1 6 .

P 1 6 92 (11X22) =

...
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
...

P 1 6 92 (X22) - P 1 6 92 (X10) ≈ 0.9732 - 0.0831 ≈ 0.8901
(TI-Befehl: binomcdf(92, 1 6 ,22) - binomcdf(92, 1 6 ,10))