Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,15 Ausschuss. Es werden nacheinander 3 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau ein Chip defekt ist.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,15, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,15 = . Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:
Treffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer (also Treffer im 3-ten Versuch)
Bei jedem dieser 3 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 3 Fälle gilt somit P = ≈ 0.3251 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 5)
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 252
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 24-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 24 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 23 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 22 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 255024 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 10626 Möglichkeiten für 4er-Gruppen, die aus 24 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 20! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
10626 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 16 dabei ist?
Es gibt insgesamt = = = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 16 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 16 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 24 Zahlen (alle außer der 16) zu setzen, also = = = 346104.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.32, also ca. 32%.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,95. Wie groß ist die Wahrscheinlichkeit dass er von 69 Versuchen genau 59 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=69 und p=0.95.
= =0.0016103234569883≈ 0.0016(TI-Befehl: binompdf(69,0.95,59))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
| 2 | ≈ 0.06 | ≈ 0.02 + 0.06 = 0.08 |
| 3 | ≈ 0.14 | ≈ 0.08 + 0.14 = 0.22 |
| 4 | ≈ 0.2 | ≈ 0.22 + 0.2 = 0.42 |
Während P(X ≤ 3) = 0.22 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 4) = 0.42 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,23 entsteht. Es wird eine Stichprobe der Menge 31 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 5 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=31 und p=0.23.
= + + +... + = 0.25016040284967 ≈ 0.2502(TI-Befehl: binomcdf(31,0.23,5))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 1 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 54 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=54 und p=0.125.
(TI-Befehl: 1-binomcdf(54,0.125,0))
Binomialverteilung l < X < k
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 59 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 11, aber weniger als 17 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=59 und p=0.25.
=
(TI-Befehl: binomcdf(59,0.25,16) - binomcdf(59,0.25,10))
