nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass im ersten Wurf keine "6" gewürfelt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 1-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 1-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - 1 6 = 5 6 ≈ 0.8333 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 4 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 4 ) = 10! 4! ⋅ (10 - 4)! = 10! 4! ⋅ 6! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 4⋅3⋅2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 10 4 ) = 10⋅9⋅8⋅7 4⋅3⋅2⋅1

= 10⋅9⋅2⋅7 3⋅2⋅1 (gekürzt mit 4)

= 10⋅3⋅2⋅7 2⋅1 (gekürzt mit 3)

= 10⋅3⋅7 1 (gekürzt mit 2)

= 210

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 2 Schülerinnen. Diese möchte sie zufällig aus der 18-köpfigen Sportgruppe losen. Wie viele verschiedene 2er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 1817 = 306 Möglichkeiten, die 18 Möglichkeiten (Schülerinnen) auf die 2 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 306 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 306 2 = 153 Möglichkeiten für 2er-Gruppen, die aus 18 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 1817 21 könnte man mit 16! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

153 = 1817 21 = 1817 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 21 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 18! 2! ⋅ 16! = ( 18 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 30 8 ) = 30! 8! ⋅ 22! = 30⋅29⋅28⋅27⋅26⋅25⋅24⋅23 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 4 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 4 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 29 Zahlen (alle außer der 4) zu setzen, also ( 29 7 ) = 29! 7! ⋅ 22! = 29⋅28⋅27⋅26⋅25⋅24⋅23 7⋅6⋅5⋅4⋅3⋅2⋅1 = 1560780.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 1560780 5852925 ≈ 0.2667, also ca. 26.67%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 70 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 32 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=70 und p=0.5.

P0.570 (X=32) = ( 70 32 ) 0.532 0.538 =0.073724718388196≈ 0.0737
(TI-Befehl: binompdf(70,0.5,32))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.05≈ 0.01 + 0.05 = 0.06
3≈ 0.13≈ 0.06 + 0.13 = 0.19
4≈ 0.21≈ 0.19 + 0.21 = 0.4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 4) = 0.4 klar darüber.

Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.81 (die Summe der blauen Säulenhöhen von 4 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.6 (die Summe der Säulenhöhen von 5 bis 11) klar darunter liegt.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 70%. Wie groß ist die Wahrscheinlichkeit dass er von 34 Versuchen nicht mehr als 25 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=34 und p=0.7.

P0.734 (X25) = P0.734 (X=0) + P0.734 (X=1) + P0.734 (X=2) +... + P0.734 (X=25) = 0.73233329823182 ≈ 0.7323
(TI-Befehl: binomcdf(34,0.7,25))

Binomialverteilung X>=k

Beispiel:

Ein Zufallsexperiment wird 56 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,45.
Wie groß ist dabei die Wahrscheinlichkeit, mehr als 27 Treffer zu erzielen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=56 und p=0.45.

...
25
26
27
28
29
30
...

P0.4556 (X>27) = P0.4556 (X28) = 1 - P0.4556 (X27) = 0.2676
(TI-Befehl: 1-binomcdf(56,0.45,27))

Binomialverteilung l < X < k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,45 entsteht. Es wird eine Stichprobe der Menge 57 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 22 und höchstens 29 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=57 und p=0.45.

P0.4557 (22X29) =

...
19
20
21
22
23
24
25
26
27
28
29
30
31
...

P0.4557 (X29) - P0.4557 (X21) ≈ 0.8473 - 0.1343 ≈ 0.713
(TI-Befehl: binomcdf(57,0.45,29) - binomcdf(57,0.45,21))