nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass im dritten Wurf keine "6" gewürfelt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 3-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 3-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - 1 6 = 5 6 ≈ 0.8333 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 2 ) = 9! 2! ⋅ (9 - 2)! = 9! 2! ⋅ 7! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
7! = 7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 9 2 ) = 9⋅8 2⋅1

= 9⋅4 1 (gekürzt mit 2)

= 36

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 65 = 30 Möglichkeiten, die 6 Möglichkeiten (SchülerInnen) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30 2 = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 65 21 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 65 21 = 65 4 3 2 1 21 4 3 2 1 = 6! 2! ⋅ 4! = ( 6 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 9 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 7 ) = 35! 7! ⋅ 28! = 35⋅34⋅33⋅32⋅31⋅30⋅29 7⋅6⋅5⋅4⋅3⋅2⋅1 = 6724520 verschiedene Möglichkeiten, die 7 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 9 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 9 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 34 Zahlen (alle außer der 9) zu setzen, also ( 34 6 ) = 34! 6! ⋅ 28! = 34⋅33⋅32⋅31⋅30⋅29 6⋅5⋅4⋅3⋅2⋅1 = 1344904.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 1344904 6724520 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 78 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 55 mal eine blaue Kugel gezogen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=78 und p=0.7.

P0.778 (X=55) = ( 78 55 ) 0.755 0.323 =0.098178538757307≈ 0.0982
(TI-Befehl: binompdf(78,0.7,55))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.6.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.04≈ 0 + 0.04 = 0.04
1≈ 0.15≈ 0.04 + 0.15 = 0.19
2≈ 0.26≈ 0.19 + 0.26 = 0.45
3≈ 0.26≈ 0.45 + 0.26 = 0.71
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.45 also noch klar unter der geforderten Wahrscheinlichkeit von 0.6 liegt, ist P(X ≤ 3) = 0.71 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,85. Wie groß ist die Wahrscheinlichkeit bei 36 Versuchen höchstens 28 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=36 und p=0.85.

P0.8536 (X28) = P0.8536 (X=0) + P0.8536 (X=1) + P0.8536 (X=2) +... + P0.8536 (X=28) = 0.16201379403938 ≈ 0.162
(TI-Befehl: binomcdf(36,0.85,28))

Binomialverteilung X>=k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,24 entsteht. Es wird eine Stichprobe der Menge 71 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 11 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=71 und p=0.24.

...
8
9
10
11
12
13
...

P0.2471 (X11) = 1 - P0.2471 (X10) = 0.9705
(TI-Befehl: 1-binomcdf(71,0.24,10))

Binomialverteilung l < X < k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,5 entsteht. Es wird eine Stichprobe der Menge 40 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 20 und höchstens 24 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=40 und p=0.5.

P0.540 (20X24) =

...
17
18
19
20
21
22
23
24
25
26
...

P0.540 (X24) - P0.540 (X19) ≈ 0.9231 - 0.4373 ≈ 0.4858
(TI-Befehl: binomcdf(40,0.5,24) - binomcdf(40,0.5,19))