nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim dritten Drehen der grüne Bereich erzielt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,6, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,6 = 0,4. Da ja der Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,40,4⋅0,6⋅0,40,4 = 0,6 · 0,4 4 ≈ 0.0154 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 40 39 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 40 39 ) = 40! 39! ⋅ (40 - 39)! = 40! 39! ⋅ 1! = 40⋅39⋅38⋅37⋅36⋅35⋅34⋅33⋅32⋅31⋅30⋅29⋅28⋅27⋅26⋅25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 39⋅38⋅37⋅36⋅35⋅34⋅33⋅32⋅31⋅30⋅29⋅28⋅27⋅26⋅25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
39! = 39⋅38⋅37⋅36⋅35⋅34⋅33⋅32⋅31⋅30⋅29⋅28⋅27⋅26⋅25⋅24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 40 39 ) = 40 1

= 40

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 8 Felder abgedruckt. Von diesen 8 Felder soll sich der Spieler 4 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8765 = 1680 Möglichkeiten, die 8 Möglichkeiten (abgedruckte Felder) auf die 4 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 1680 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 1680 24 = 70 Möglichkeiten für 4er-Gruppen, die aus 8 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 8765 4321 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

70 = 8765 4321 = 8765 4 3 2 1 4321 4 3 2 1 = 8! 4! ⋅ 4! = ( 8 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 11 und die 14 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 40 6 ) = 40! 6! ⋅ 34! = 40⋅39⋅38⋅37⋅36⋅35 6⋅5⋅4⋅3⋅2⋅1 = 3838380 verschiedene Möglichkeiten, die 6 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 11 und die 14 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 11 und der 14 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 38 Zahlen (alle außer der 11 und der 14) zu setzen, also ( 38 4 ) = 38! 4! ⋅ 34! = 38⋅37⋅36⋅35 4⋅3⋅2⋅1 = 73815.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 73815 3838380 ≈ 0.0192, also ca. 1.92%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 68 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 40 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=68 und p=0.5.

P0.568 (X=40) = ( 68 40 ) 0.540 0.528 =0.033777873842835≈ 0.0338
(TI-Befehl: binompdf(68,0.5,40))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.15.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.06≈ 0 + 0.06 = 0.06
1≈ 0.19≈ 0.06 + 0.19 = 0.25
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 0) = 0.06 also noch klar unter der geforderten Wahrscheinlichkeit von 0.15 liegt, ist P(X ≤ 1) = 0.25 klar darüber.

Somit ist das gesuchte k = 1.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 71 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 34 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=71 und p=0.5.

P0.571 (X34) = P0.571 (X=0) + P0.571 (X=1) + P0.571 (X=2) +... + P0.571 (X=34) = 0.40629432470308 ≈ 0.4063
(TI-Befehl: binomcdf(71,0.5,34))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,75. Wie groß ist die Wahrscheinlichkeit bei 81 Versuchen mehr als 68 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=81 und p=0.75.

...
66
67
68
69
70
71
...

P0.7581 (X>68) = P0.7581 (X69) = 1 - P0.7581 (X68) = 0.0192
(TI-Befehl: 1-binomcdf(81,0.75,68))

Binomialverteilung l < X < k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,7. Wie groß ist die Wahrscheinlichkeit bei 45 Versuchen, mehr als 28 mal und höchstens 36 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=45 und p=0.7.

P0.745 (29X36) =

...
26
27
28
29
30
31
32
33
34
35
36
37
38
...

P0.745 (X36) - P0.745 (X28) ≈ 0.9529 - 0.1642 ≈ 0.7887
(TI-Befehl: binomcdf(45,0.7,36) - binomcdf(45,0.7,28))