nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der ersten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 1-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 1-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,7 ≈ 0.7 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 8 4 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 8 4 ) = 8! 4! ⋅ (8 - 4)! = 8! 4! ⋅ 4! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 4⋅3⋅2⋅1 ⋅ 4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
4! = 4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 8 4 ) = 8⋅7⋅6⋅5 4⋅3⋅2⋅1

= 2⋅7⋅6⋅5 3⋅2⋅1 (gekürzt mit 4)

= 2⋅7⋅2⋅5 2⋅1 (gekürzt mit 3)

= 7⋅2⋅5 1 (gekürzt mit 2)

= 70

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87654 = 6720 Möglichkeiten, die 8 Möglichkeiten (SchülerInnen) auf die 5 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6720 120 = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 87654 54321 könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

56 = 87654 54321 = 87654 3 2 1 54321 3 2 1 = 8! 5! ⋅ 3! = ( 8 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 13 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 25 8 ) = 25! 8! ⋅ 17! = 25⋅24⋅23⋅22⋅21⋅20⋅19⋅18 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 1081575 verschiedene Möglichkeiten, die 8 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 13 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 13 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 24 Zahlen (alle außer der 13) zu setzen, also ( 24 7 ) = 24! 7! ⋅ 17! = 24⋅23⋅22⋅21⋅20⋅19⋅18 7⋅6⋅5⋅4⋅3⋅2⋅1 = 346104.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 346104 1081575 ≈ 0.32, also ca. 32%.

Formel v. Bernoulli

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 90 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 68 mal eine blaue Kugel gezogen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=90 und p=0.7.

P0.790 (X=68) = ( 90 68 ) 0.768 0.322 =0.048983026748819≈ 0.049
(TI-Befehl: binompdf(90,0.7,68))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.6.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.6 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.6 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.6=0.4 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.08≈ 0.04 + 0.08 = 0.12
4≈ 0.15≈ 0.12 + 0.15 = 0.27
5≈ 0.21≈ 0.27 + 0.21 = 0.48
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.27 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 5) = 0.48 klar darüber.

Oder andersrum: P(X ≥ 5) = 1 - P(X ≤ 4) = 0.73 (die Summe der blauen Säulenhöhen von 5 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.6, während P(X ≥ 6) = 1 - P(X ≤ 5) = 0.52 (die Summe der Säulenhöhen von 6 bis 14) klar darunter liegt.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,95. Wie groß ist die Wahrscheinlichkeit bei 65 Versuchen weniger als 60 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=65 und p=0.95.

P0.9565 (X<60) = P0.9565 (X59) = P0.9565 (X=0) + P0.9565 (X=1) + P0.9565 (X=2) +... + P0.9565 (X=59) = 0.10587428913705 ≈ 0.1059
(TI-Befehl: binomcdf(65,0.95,59))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,1. Wie groß ist die Wahrscheinlichkeit bei 95 Versuchen mehr als 14 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=95 und p=0.1.

...
12
13
14
15
16
17
...

P0.195 (X>14) = P0.195 (X15) = 1 - P0.195 (X14) = 0.0503
(TI-Befehl: 1-binomcdf(95,0.1,14))

Binomialverteilung l < X < k

Beispiel:

Ein Würfel wird 43 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 3 mal, aber weniger als 8 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=43 und p= 1 6 .

P 1 6 43 (4X7) =

...
1
2
3
4
5
6
7
8
9
...

P 1 6 43 (X7) - P 1 6 43 (X3) ≈ 0.5719 - 0.0569 ≈ 0.515
(TI-Befehl: binomcdf(43, 1 6 ,7) - binomcdf(43, 1 6 ,3))