Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jedes mal eine "6" gewürfelt wird.
Da die Wahrscheinlichkeit für einen Treffer (also hier, dass keine "6" gewürfelt wird) p = beträgt, muss die Wahrscheinlichkeit für 5 Treffer bei 5 Versuchen P = ≈ 0.0001 betragen, da ja bei jedem Versuch ein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
24! = 24⋅23⋅22⋅21⋅20⋅19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= 25
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 4 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
210 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 2 und die 24 dabei sind?
Es gibt insgesamt = = = 76904685 verschiedene Möglichkeiten, die 8 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 2 und die 24 sind, bzw. wie viele Möglichkeiten es gibt, 8 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 2 und der 24 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 38 Zahlen (alle außer der 2 und der 24) zu setzen, also = = = 2760681.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0359, also ca. 3.59%.
Formel v. Bernoulli
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 39 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 25 mal eine blaue Kugel gezogen wird?
Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=39 und p=0.7.
= =0.096756380192235≈ 0.0968(TI-Befehl: binompdf(39,0.7,25))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.
Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.02 | ≈ 0 + 0.02 = 0.02 |
| 2 | ≈ 0.06 | ≈ 0.02 + 0.06 = 0.08 |
| 3 | ≈ 0.14 | ≈ 0.08 + 0.14 = 0.22 |
| 4 | ≈ 0.21 | ≈ 0.22 + 0.21 = 0.43 |
| 5 | ≈ 0.23 | ≈ 0.43 + 0.23 = 0.66 |
Während P(X ≤ 4) = 0.43 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 5) = 0.66 klar darüber.
Oder andersrum: P(X ≥ 5) = 1 - P(X ≤ 4) = 0.57 (die Summe der blauen Säulenhöhen von 5 bis 12) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 6) = 1 - P(X ≤ 5) = 0.34 (die Summe der Säulenhöhen von 6 bis 12) klar darunter liegt.
Somit ist das gesuchte k = 5.
kumulierte Binomialverteilung
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 5 Glückskekse mit einer Peproni zu erwischen, wenn man 90 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=90 und p=.
= + + +... + = 0.024850360645057 ≈ 0.0249(TI-Befehl: binomcdf(90,1/8,5))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 8 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=92 und p=0.125.
(TI-Befehl: 1-binomcdf(92,0.125,7))
Binomialverteilung l < X < k
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 89 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 24, aber weniger als 31 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=89 und p=0.25.
=
(TI-Befehl: binomcdf(89,0.25,30) - binomcdf(89,0.25,23))
