nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass nur im vierten Wurf eine "6" gewürfelt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = 1 6 , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - 1 6 = 5 6 . Da ja der Treffer genau im vierten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 5 6 5 6 5 6 1 6 5 6 = 1 6 · ( 5 6 ) 4 ≈ 0.0804 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 2 ) = 10! 2! ⋅ (10 - 2)! = 10! 2! ⋅ 8! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 10 2 ) = 10⋅9 2⋅1

= 5⋅9 1 (gekürzt mit 2)

= 45

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 8 Felder abgedruckt. Von diesen 8 Felder soll sich der Spieler 2 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87 = 56 Möglichkeiten, die 8 Möglichkeiten (abgedruckte Felder) auf die 2 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 87 21 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

28 = 87 21 = 87 6 5 4 3 2 1 21 6 5 4 3 2 1 = 8! 2! ⋅ 6! = ( 8 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 11 und die 15 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 25 7 ) = 25! 7! ⋅ 18! = 25⋅24⋅23⋅22⋅21⋅20⋅19 7⋅6⋅5⋅4⋅3⋅2⋅1 = 480700 verschiedene Möglichkeiten, die 7 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 11 und die 15 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 11 und der 15 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 23 Zahlen (alle außer der 11 und der 15) zu setzen, also ( 23 5 ) = 23! 5! ⋅ 18! = 23⋅22⋅21⋅20⋅19 5⋅4⋅3⋅2⋅1 = 33649.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 33649 480700 ≈ 0.07, also ca. 7%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 70% entsteht. Es wird eine Stichprobe der Menge 42 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 26 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=42 und p=0.7.

P0.742 (X=26) = ( 42 26 ) 0.726 0.316 =0.067286619625223≈ 0.0673
(TI-Befehl: binompdf(42,0.7,26))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.06≈ 0 + 0.06 = 0.06
1≈ 0.19≈ 0.06 + 0.19 = 0.25
2≈ 0.28≈ 0.25 + 0.28 = 0.53
3≈ 0.25≈ 0.53 + 0.25 = 0.78
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.53 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 3) = 0.78 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Ein Zufallsexperiment wird 54 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,1.Wie groß ist dabei die Wahrscheinlichkeit, höchstens 0 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=54 und p=0.1.

P0.154 (X0) = P0.154 (X=0) = 0.0033813919135227 ≈ 0.0034
(TI-Befehl: binomcdf(54,0.1,0))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,6. Wie groß ist die Wahrscheinlichkeit bei 59 Versuchen mehr als 37 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=59 und p=0.6.

...
35
36
37
38
39
40
...

P0.659 (X>37) = P0.659 (X38) = 1 - P0.659 (X37) = 0.2907
(TI-Befehl: 1-binomcdf(59,0.6,37))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 81% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 51 Versuchen mindestens 40 und weniger als 45 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=51 und p=0.81.

P0.8151 (40X44) =

...
37
38
39
40
41
42
43
44
45
46
...

P0.8151 (X44) - P0.8151 (X39) ≈ 0.8757 - 0.2523 ≈ 0.6234
(TI-Befehl: binomcdf(51,0.81,44) - binomcdf(51,0.81,39))