Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass keine einzige "6" gewürfelt wird.
Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass keine "6" gewürfelt wird) q = 1 - = beträgt, muss die Wahrscheinlichkeit für 3 Nicht-Treffer bei 3 Versuchen P = ≈ 0.5787 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
7! = 7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 4)
= (gekürzt mit 3)
= (gekürzt mit 2)
= 330
Binomialkoeffizient Anwendungen
Beispiel:
Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 3 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?
Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 29760 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 4960 Möglichkeiten für 3er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 29! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
4960 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 11 dabei ist?
Es gibt insgesamt = = = 15504 verschiedene Möglichkeiten, die 5 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 11 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 11 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 19 Zahlen (alle außer der 11) zu setzen, also = = = 3876.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.25, also ca. 25%.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,5. Wie groß ist die Wahrscheinlichkeit dass er von 25 Versuchen genau 14 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.5.
= =0.13284087181091≈ 0.1328(TI-Befehl: binompdf(25,0.5,14))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 1 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 2 | ≈ 0.14 | ≈ 0.06 + 0.14 = 0.2 |
| 3 | ≈ 0.22 | ≈ 0.2 + 0.22 = 0.42 |
Während P(X ≤ 2) = 0.2 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 3) = 0.42 klar darüber.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 73 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 31 mal "Zahl" (p=0,5) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=73 und p=0.5.
= = + + +... + = 0.07985584155901 ≈ 0.0799(TI-Befehl: binomcdf(73,0.5,30))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 22 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 2 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=22 und p=.
(TI-Befehl: 1-binomcdf(22,,1))
Binomialverteilung l < X < k
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,4 entsteht. Es wird eine Stichprobe der Menge 94 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 31 und höchstens 39 beträgt?
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=94 und p=0.4.
=
(TI-Befehl: binomcdf(94,0.4,39) - binomcdf(94,0.4,30))
