Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der ersten Drehung der grüne Bereich erzielt wird.
Da hier ja nur eine Aussage über den 1-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 1-te Versuch
betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)
Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = ≈ 0.6 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 10
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
15 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4, die 5 und die 15 dabei sind?
Es gibt insgesamt = = = 77520 verschiedene Möglichkeiten, die 7 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 4, die 5 und die 15 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 20 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 4, der 5 und der 15 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 17 Zahlen (alle außer der 4, der 5 und der 15) zu setzen, also = = = 2380.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0307, also ca. 3.07%.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,05. Wie groß ist die Wahrscheinlichkeit dass er von 32 Versuchen genau 4 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=32 und p=0.05.
= =0.053451592461136≈ 0.0535(TI-Befehl: binompdf(32,0.05,4))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.6.
Wenn P(X ≥ k) ≥ 0.6 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.6 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.6=0.4 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
k | P(X = k) | P(X ≤ k) |
---|---|---|
0 | ≈ 0.04 | ≈ 0 + 0.04 = 0.04 |
1 | ≈ 0.15 | ≈ 0.04 + 0.15 = 0.19 |
2 | ≈ 0.26 | ≈ 0.19 + 0.26 = 0.45 |
Während P(X ≤ 1) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 2) = 0.45 klar darüber.
Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.81 (die Summe der blauen Säulenhöhen von 2 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.6, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.55 (die Summe der Säulenhöhen von 3 bis 11) klar darunter liegt.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,21 entsteht. Es wird eine Stichprobe der Menge 27 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 4 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=27 und p=0.21.
= + + +... + = 0.30222607581788 ≈ 0.3022(TI-Befehl: binomcdf(27,0.21,4))
Binomialverteilung X>=k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,6. Wie groß ist die Wahrscheinlichkeit dass er von 25 Versuchen mehr als 16 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.6.
(TI-Befehl: 1-binomcdf(25,0.6,16))
Binomialverteilung l < X < k
Beispiel:
Ein Zufallsexperiment wird 61 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 22, aber höchstens 29 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=61 und p=0.4.
=
(TI-Befehl: binomcdf(61,0.4,29) - binomcdf(61,0.4,21))