nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei jeder Drehung außer der zweiten in den grünen Bereich gedreht wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = 0,3. Da ja der Nicht-Treffer genau im zweiten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,7⋅0,3⋅0,7⋅0,7⋅0,7 = 0,3 · 0,7 4 ≈ 0.072 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 7 5 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 7 5 ) = 7! 5! ⋅ (7 - 5)! = 7! 5! ⋅ 2! = 7⋅6⋅5⋅4⋅3⋅2⋅1 5⋅4⋅3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 7 5 ) = 7⋅6 2⋅1

= 7⋅3 1 (gekürzt mit 2)

= 21

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 21-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 21 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 20 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 19 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 2120191817 = 2441880 Möglichkeiten, die 21 Möglichkeiten (Schülerinnen) auf die 5 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 2441880 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 2441880 120 = 20349 Möglichkeiten für 5er-Gruppen, die aus 21 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 2120191817 54321 könnte man mit 16! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

20349 = 2120191817 54321 = 2120191817 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 54321 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 21! 5! ⋅ 16! = ( 21 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 11 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 4 ) = 20! 4! ⋅ 16! = 20⋅19⋅18⋅17 4⋅3⋅2⋅1 = 4845 verschiedene Möglichkeiten, die 4 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 11 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 11 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 19 Zahlen (alle außer der 11) zu setzen, also ( 19 3 ) = 19! 3! ⋅ 16! = 19⋅18⋅17 3⋅2⋅1 = 969.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 969 4845 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 5 Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=92 und p= 1 8 .

P 1 8 92 (X=5) = ( 92 5 ) ( 1 8 )5 ( 7 8 )87 =0.013521156509149≈ 0.0135
(TI-Befehl: binompdf(92,1/8,5))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.06≈ 0 + 0.06 = 0.06
1≈ 0.19≈ 0.06 + 0.19 = 0.25
2≈ 0.28≈ 0.25 + 0.28 = 0.53
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.25 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 2) = 0.53 klar darüber.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Ein Zufallsexperiment wird 56 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,6. Wie groß ist dabei die Wahrscheinlichkeit, weniger als 38 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=56 und p=0.6.

P0.656 (X<38) = P0.656 (X37) = P0.656 (X=0) + P0.656 (X=1) + P0.656 (X=2) +... + P0.656 (X=37) = 0.85663540306793 ≈ 0.8566
(TI-Befehl: binomcdf(56,0.6,37))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 80 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 7 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=80 und p= 1 6 .

...
4
5
6
7
8
9
...

P 1 6 80 (X7) = 1 - P 1 6 80 (X6) = 0.986
(TI-Befehl: 1-binomcdf(80, 1 6 ,6))

Binomialverteilung l < X < k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,55 entsteht. Es wird eine Stichprobe der Menge 91 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 42 und höchstens 57 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=91 und p=0.55.

P0.5591 (42X57) =

...
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
...

P0.5591 (X57) - P0.5591 (X41) ≈ 0.9426 - 0.0361 ≈ 0.9065
(TI-Befehl: binomcdf(91,0.55,57) - binomcdf(91,0.55,41))