Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass im ersten Wurf keine "6" gewürfelt wird.
Da hier ja nur eine Aussage über den 1-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 1-te Versuch
betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)
Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - = ≈ 0.8333 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
4! = 4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 15
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
56 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 20 und die 33 dabei sind?
Es gibt insgesamt = = = 658008 verschiedene Möglichkeiten, die 5 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 20 und die 33 sind, bzw. wie viele Möglichkeiten es gibt, 5 von 40 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 20 und der 33 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 38 Zahlen (alle außer der 20 und der 33) zu setzen, also = = = 8436.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0128, also ca. 1.28%.
Formel v. Bernoulli
Beispiel:
Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 20-mal gewürfelt. Es werden hierbei 5 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 5 6er bei 20 Würfen.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=.
= =0.12941029197899≈ 0.1294(TI-Befehl: binompdf(20,1/6,5))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.
Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 1 | ≈ 0.12 | ≈ 0.03 + 0.12 = 0.15 |
| 2 | ≈ 0.23 | ≈ 0.15 + 0.23 = 0.38 |
Während P(X ≤ 1) = 0.15 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 2) = 0.38 klar darüber.
Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.85 (die Summe der blauen Säulenhöhen von 2 bis 10) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.62 (die Summe der Säulenhöhen von 3 bis 10) klar darunter liegt.
Somit ist das gesuchte k = 2.
kumulierte Binomialverteilung
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,3. Wie groß ist die Wahrscheinlichkeit bei 98 Versuchen weniger als 29 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=98 und p=0.3.
= = + + +... + = 0.42701256682785 ≈ 0.427(TI-Befehl: binomcdf(98,0.3,28))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 30 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 7 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=30 und p=.
(TI-Befehl: 1-binomcdf(30,,6))
Binomialverteilung l < X < k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 2 und höchstens 13 Glückskekse mit einer Peproni zu erwischen, wenn man 92 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=92 und p=0.125.
=
(TI-Befehl: binomcdf(92,0.125,13) - binomcdf(92,0.125,2))
