Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass nur im vierten Wurf eine "6" gewürfelt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - = . Da ja der Treffer genau im vierten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅⋅⋅ = ≈ 0.0804 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 45
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 8 Felder abgedruckt. Von diesen 8 Felder soll sich der Spieler 2 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
28 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 11 und die 15 dabei sind?
Es gibt insgesamt = = = 480700 verschiedene Möglichkeiten, die 7 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 7 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 11 und die 15 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 11 und der 15 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 23 Zahlen (alle außer der 11 und der 15) zu setzen, also = = = 33649.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.07, also ca. 7%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 70% entsteht. Es wird eine Stichprobe der Menge 42 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 26 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=42 und p=0.7.
= =0.067286619625223≈ 0.0673(TI-Befehl: binompdf(42,0.7,26))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.06 | ≈ 0 + 0.06 = 0.06 |
| 1 | ≈ 0.19 | ≈ 0.06 + 0.19 = 0.25 |
| 2 | ≈ 0.28 | ≈ 0.25 + 0.28 = 0.53 |
| 3 | ≈ 0.25 | ≈ 0.53 + 0.25 = 0.78 |
Während P(X ≤ 2) = 0.53 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 3) = 0.78 klar darüber.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Ein Zufallsexperiment wird 54 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,1.Wie groß ist dabei die Wahrscheinlichkeit, höchstens 0 Treffer zu erzielen?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=54 und p=0.1.
= = 0.0033813919135227 ≈ 0.0034(TI-Befehl: binomcdf(54,0.1,0))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,6. Wie groß ist die Wahrscheinlichkeit bei 59 Versuchen mehr als 37 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=59 und p=0.6.
(TI-Befehl: 1-binomcdf(59,0.6,37))
Binomialverteilung l < X < k
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 81% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 51 Versuchen mindestens 40 und weniger als 45 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=51 und p=0.81.
=
(TI-Befehl: binomcdf(51,0.81,44) - binomcdf(51,0.81,39))
