nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim vierten Drehen der grüne Bereich erzielt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = 0,3. Da ja der Treffer genau im vierten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 0,30,30,3⋅0,7⋅0,3 = 0,7 · 0,3 4 ≈ 0.0057 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 2 ) = 9! 2! ⋅ (9 - 2)! = 9! 2! ⋅ 7! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
7! = 7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 9 2 ) = 9⋅8 2⋅1

= 9⋅4 1 (gekürzt mit 2)

= 36

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 8 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 2 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 87 = 56 Möglichkeiten, die 8 Möglichkeiten (Eissorten) auf die 2 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 87 21 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

28 = 87 21 = 87 6 5 4 3 2 1 21 6 5 4 3 2 1 = 8! 2! ⋅ 6! = ( 8 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 20 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 40 4 ) = 40! 4! ⋅ 36! = 40⋅39⋅38⋅37 4⋅3⋅2⋅1 = 91390 verschiedene Möglichkeiten, die 4 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 20 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 20 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 39 Zahlen (alle außer der 20) zu setzen, also ( 39 3 ) = 39! 3! ⋅ 36! = 39⋅38⋅37 3⋅2⋅1 = 9139.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 9139 91390 ≈ 0.1, also ca. 10%.

Formel v. Bernoulli

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 16 Glückskekse mit einer Peproni zu erwischen, wenn man 82 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=82 und p= 1 8 .

P 1 8 82 (X=16) = ( 82 16 ) ( 1 8 )16 ( 7 8 )66 =0.022060965632499≈ 0.0221
(TI-Befehl: binompdf(82,1/8,16))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.2.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.08≈ 0.04 + 0.08 = 0.12
4≈ 0.15≈ 0.12 + 0.15 = 0.27
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.12 also noch klar unter der geforderten Wahrscheinlichkeit von 0.2 liegt, ist P(X ≤ 4) = 0.27 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 63%. Wie groß ist die Wahrscheinlichkeit dass er von 38 Versuchen nicht mehr als 22 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=38 und p=0.63.

P0.6338 (X22) = P0.6338 (X=0) + P0.6338 (X=1) + P0.6338 (X=2) +... + P0.6338 (X=22) = 0.31055437249517 ≈ 0.3106
(TI-Befehl: binomcdf(38,0.63,22))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,2. Wie groß ist die Wahrscheinlichkeit bei 63 Versuchen mindestens 9 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=63 und p=0.2.

...
6
7
8
9
10
11
...

P0.263 (X9) = 1 - P0.263 (X8) = 0.9063
(TI-Befehl: 1-binomcdf(63,0.2,8))

Binomialverteilung l < X < k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,4. Wie groß ist die Wahrscheinlichkeit bei 91 Versuchen, mehr als 38 mal und höchstens 46 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=91 und p=0.4.

P0.491 (39X46) =

...
36
37
38
39
40
41
42
43
44
45
46
47
48
...

P0.491 (X46) - P0.491 (X38) ≈ 0.9839 - 0.6754 ≈ 0.3085
(TI-Befehl: binomcdf(91,0.4,46) - binomcdf(91,0.4,38))