nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,4 Ausschuss. Es werden nacheinander 6 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau ein Chip defekt ist.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,4, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,4 = 0,6. Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:

Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer - NichtTreffer (also Treffer im 3-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer - NichtTreffer (also Treffer im 4-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer - NichtTreffer (also Treffer im 5-ten Versuch)
NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - NichtTreffer - Treffer (also Treffer im 6-ten Versuch)

Bei jedem dieser 6 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,4 · 0,6 5 .

Für die gesuchte Wahrscheinlichkeit aller 6 Fälle gilt somit P = 6 · 0,4 · 0,6 5 ≈ 0.1866 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 4 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 4 2 ) = 4! 2! ⋅ (4 - 2)! = 4! 2! ⋅ 2! = 4⋅3⋅2⋅1 2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
2! = 2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 4 2 ) = 4⋅3 2⋅1

= 2⋅3 1 (gekürzt mit 2)

= 6

Binomialkoeffizient Anwendungen

Beispiel:

Ein Skatkartenspiel hat 32 verschiedende Karten. Aus einem gut gemischten Stapel werden 6 Karten gezogen.Wie viele verschiedene Möglichkeiten gibt es hierfür?

Lösung einblenden

Für die erste Stelle ist jede Karte möglich. Es gibt also 32 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Karte nicht mehr möglich, es gibt also nur noch 31 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 30 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 323130292827 = 652458240 Möglichkeiten, die 32 Möglichkeiten (Karten) auf die 6 "Ziehungen" (gezogene) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel HerzAss - KreuzBube - Karo7 und KreuzBube - Karo7 - HerzAss zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 6er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 6er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 6er-Gruppe möglich. Es gibt also 6 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 654321 = 720 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 6er-Gruppe.

Wir müssen deswegen die 652458240 Möglichkeiten für nach Reihenfolge sortierte 6er-Gruppen durch die 720 Möglichkeiten, die 6er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 652458240 720 = 906192 Möglichkeiten für 6er-Gruppen, die aus 32 Elementen (Karten) gebildet werden.

Die hier durchgeführte Berechnung 323130292827 654321 könnte man mit 26! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

906192 = 323130292827 654321 = 323130292827 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 654321 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 32! 6! ⋅ 26! = ( 32 6 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 26 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 6 ) = 35! 6! ⋅ 29! = 35⋅34⋅33⋅32⋅31⋅30 6⋅5⋅4⋅3⋅2⋅1 = 1623160 verschiedene Möglichkeiten, die 6 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 26 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 26 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 34 Zahlen (alle außer der 26) zu setzen, also ( 34 5 ) = 34! 5! ⋅ 29! = 34⋅33⋅32⋅31⋅30 5⋅4⋅3⋅2⋅1 = 278256.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 278256 1623160 ≈ 0.1714, also ca. 17.14%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 5% entsteht. Es wird eine Stichprobe der Menge 79 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 5 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=79 und p=0.05.

P0.0579 (X=5) = ( 79 5 ) 0.055 0.9574 =0.15823510582483≈ 0.1582
(TI-Befehl: binompdf(79,0.05,5))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.75.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.75 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.75 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.75=0.25 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.08≈ 0.04 + 0.08 = 0.12
4≈ 0.15≈ 0.12 + 0.15 = 0.27
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.12 also noch klar unter der geforderten Wahrscheinlichkeit von 0.25 liegt, ist P(X ≤ 4) = 0.27 klar darüber.

Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.88 (die Summe der blauen Säulenhöhen von 4 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.75, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.73 (die Summe der Säulenhöhen von 5 bis 14) klar darunter liegt.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,19 entsteht. Es wird eine Stichprobe der Menge 42 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 11 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=42 und p=0.19.

P0.1942 (X11) = P0.1942 (X=0) + P0.1942 (X=1) + P0.1942 (X=2) +... + P0.1942 (X=11) = 0.91252421147084 ≈ 0.9125
(TI-Befehl: binomcdf(42,0.19,11))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,5. Wie groß ist die Wahrscheinlichkeit bei 59 Versuchen mehr als 26 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=59 und p=0.5.

...
24
25
26
27
28
29
...

P0.559 (X>26) = P0.559 (X27) = 1 - P0.559 (X26) = 0.7825
(TI-Befehl: 1-binomcdf(59,0.5,26))

Binomialverteilung l < X < k

Beispiel:

Ein Würfel wird 89 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 7 mal, aber weniger als 18 mal eine sechs gewürfelt wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=89 und p= 1 6 .

P 1 6 89 (8X17) =

...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
...

P 1 6 89 (X17) - P 1 6 89 (X7) ≈ 0.78 - 0.0129 ≈ 0.7671
(TI-Befehl: binomcdf(89, 1 6 ,17) - binomcdf(89, 1 6 ,7))