nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der zweiten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 2-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 2-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,7 ≈ 0.7 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 8 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 8 2 ) = 8! 2! ⋅ (8 - 2)! = 8! 2! ⋅ 6! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 8 2 ) = 8⋅7 2⋅1

= 4⋅7 1 (gekürzt mit 2)

= 28

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109 = 90 Möglichkeiten, die 10 Möglichkeiten (SchülerInnen) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 90 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 90 2 = 45 Möglichkeiten für 2er-Gruppen, die aus 10 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 109 21 könnte man mit 8! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

45 = 109 21 = 109 8 7 6 5 4 3 2 1 21 8 7 6 5 4 3 2 1 = 10! 2! ⋅ 8! = ( 10 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.

Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 22 und die 24 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 25 5 ) = 25! 5! ⋅ 20! = 25⋅24⋅23⋅22⋅21 5⋅4⋅3⋅2⋅1 = 53130 verschiedene Möglichkeiten, die 5 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 5 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 22 und die 24 sind, bzw. wie viele Möglichkeiten es gibt, 5 von 25 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 22 und der 24 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 23 Zahlen (alle außer der 22 und der 24) zu setzen, also ( 23 3 ) = 23! 3! ⋅ 20! = 23⋅22⋅21 3⋅2⋅1 = 1771.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 1771 53130 ≈ 0.0333, also ca. 3.33%.

Formel v. Bernoulli

Beispiel:

Ein Würfel wird 47 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 7 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=47 und p= 1 6 .

P 1 6 47 (X=7) = ( 47 7 ) ( 1 6 )7 ( 5 6 )40 =0.15285630302111≈ 0.1529
(TI-Befehl: binompdf(47,1/6,7))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.03≈ 0 + 0.03 = 0.03
2≈ 0.09≈ 0.03 + 0.09 = 0.12
3≈ 0.18≈ 0.12 + 0.18 = 0.3
4≈ 0.24≈ 0.3 + 0.24 = 0.54
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.3 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 4) = 0.54 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Eine Münze wird 30 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 18 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=30 und p=0.5.

P0.530 (X<18) = P0.530 (X17) = P0.530 (X=0) + P0.530 (X=1) + P0.530 (X=2) +... + P0.530 (X=17) = 0.81920269597322 ≈ 0.8192
(TI-Befehl: binomcdf(30,0.5,17))

Binomialverteilung X>=k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 75 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so 18 oder gar noch mehr Fragen richtig beantwortet hat?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=75 und p=0.25.

...
15
16
17
18
19
20
...

P0.2575 (X18) = 1 - P0.2575 (X17) = 0.6228
(TI-Befehl: 1-binomcdf(75,0.25,17))

Binomialverteilung l < X < k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,7 entsteht. Es wird eine Stichprobe der Menge 63 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 38 und höchstens 47 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=63 und p=0.7.

P0.763 (38X47) =

...
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
...

P0.763 (X47) - P0.763 (X37) ≈ 0.8245 - 0.0375 ≈ 0.787
(TI-Befehl: binomcdf(63,0.7,47) - binomcdf(63,0.7,37))