Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,35 Ausschuss. Es werden nacheinander 5 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass nur beim dritten Chip ein Defekt vorliegt.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,35, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,35 = . Da ja der Treffer genau im dritten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅0,35⋅⋅ = ≈ 0.0625 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
18! = 18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 190
Binomialkoeffizient Anwendungen
Beispiel:
Eine Eisdiele bietet 7 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?
Für die erste Stelle ist jede Eissorte möglich. Es gibt also 7 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 6 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 5 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 840 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 35 Möglichkeiten für 4er-Gruppen, die aus 7 Elementen (Eissorten) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 3! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
35 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.
Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 28 dabei ist?
Es gibt insgesamt = = = 5852925 verschiedene Möglichkeiten, die 8 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 8 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 28 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 28 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 29 Zahlen (alle außer der 28) zu setzen, also = = = 1560780.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.2667, also ca. 26.67%.
Formel v. Bernoulli
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 39 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 30 mal eine blaue Kugel gezogen wird?
Die Zufallsgröße X gibt die Anzahl der blauen Kugeln an. X ist binomialverteilt mit n=39 und p=0.7.
= =0.094014418012392≈ 0.094(TI-Befehl: binompdf(39,0.7,30))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.65.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 2 | ≈ 0.09 | ≈ 0.03 + 0.09 = 0.12 |
| 3 | ≈ 0.18 | ≈ 0.12 + 0.18 = 0.3 |
| 4 | ≈ 0.24 | ≈ 0.3 + 0.24 = 0.54 |
| 5 | ≈ 0.22 | ≈ 0.54 + 0.22 = 0.76 |
Während P(X ≤ 4) = 0.54 also noch klar unter der geforderten Wahrscheinlichkeit von 0.65 liegt, ist P(X ≤ 5) = 0.76 klar darüber.
Somit ist das gesuchte k = 5.
kumulierte Binomialverteilung
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 50%. Wie groß ist die Wahrscheinlichkeit dass er von 59 Versuchen nicht mehr als 27 trifft?
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=59 und p=0.5.
= + + +... + = 0.30146160062858 ≈ 0.3015(TI-Befehl: binomcdf(59,0.5,27))
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,35. Wie groß ist die Wahrscheinlichkeit bei 92 Versuchen mehr als 33 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=92 und p=0.35.
(TI-Befehl: 1-binomcdf(92,0.35,33))
Binomialverteilung l < X < k
Beispiel:
Ein Würfel wird 81 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 12 mal, aber weniger als 18 mal eine sechs gewürfelt wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=81 und p=.
=
(TI-Befehl: binomcdf(81,,17) - binomcdf(81,,12))
