Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau einmal eine "6" gewürfelt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - = . Hier gibt es nun mehrere Möglichkeiten, wann der eine Treffer eintritt:
Treffer - NichtTreffer - NichtTreffer (also Treffer im 1-ten Versuch)
NichtTreffer - Treffer - NichtTreffer (also Treffer im 2-ten Versuch)
NichtTreffer - NichtTreffer - Treffer (also Treffer im 3-ten Versuch)
Bei jedem dieser 3 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = .
Für die gesuchte Wahrscheinlichkeit aller 3 Fälle gilt somit P = ≈ 0.3472 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
15! = 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 16
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 18-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 16 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 1028160 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 8568 Möglichkeiten für 5er-Gruppen, die aus 18 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 13! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
8568 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 7 und die 20 dabei sind?
Es gibt insgesamt = = = 15504 verschiedene Möglichkeiten, die 5 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn zwei der gezogenen Zahlen die 7 und die 20 sind, bzw. wie viele Möglichkeiten es gibt, 5 von 20 Zahlen anzukreuzen, wobei zwei Kreuze sicher auf der der 7 und der 20 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 18 Zahlen (alle außer der 7 und der 20) zu setzen, also = = = 816.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.0526, also ca. 5.26%.
Formel v. Bernoulli
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 7 Glückskekse mit einer Peproni zu erwischen, wenn man 43 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=43 und p=.
= =0.12555701585053≈ 0.1256(TI-Befehl: binompdf(43,1/8,7))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.75.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0.03 | ≈ 0 + 0.03 = 0.03 |
| 1 | ≈ 0.13 | ≈ 0.03 + 0.13 = 0.16 |
| 2 | ≈ 0.23 | ≈ 0.16 + 0.23 = 0.39 |
| 3 | ≈ 0.26 | ≈ 0.39 + 0.26 = 0.65 |
| 4 | ≈ 0.19 | ≈ 0.65 + 0.19 = 0.84 |
Während P(X ≤ 3) = 0.65 also noch klar unter der geforderten Wahrscheinlichkeit von 0.75 liegt, ist P(X ≤ 4) = 0.84 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 86 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 20 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=86 und p=0.25.
= + + +... + = 0.40940146936527 ≈ 0.4094(TI-Befehl: binomcdf(86,0.25,20))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 45 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 5 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=45 und p=.
(TI-Befehl: 1-binomcdf(45,,5))
Binomialverteilung l < X < k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,6. Wie groß ist die Wahrscheinlichkeit bei 44 Versuchen, mehr als 22 mal und höchstens 30 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=44 und p=0.6.
=
(TI-Befehl: binomcdf(44,0.6,30) - binomcdf(44,0.6,22))
