Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jeder Wurf eine "6" ist, außer beim ersten Versuch.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - = . Da ja der Nicht-Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅⋅⋅ = ≈ 0.0006 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
19! = 19⋅18⋅17⋅16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 210
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 3 Schülerinnen. Diese möchte sie zufällig aus der 19-köpfigen Sportgruppe losen. Wie viele verschiedene 3er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 19 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 18 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 17 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 5814 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 969 Möglichkeiten für 3er-Gruppen, die aus 19 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 16! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
969 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 1 dabei ist?
Es gibt insgesamt = = = 15504 verschiedene Möglichkeiten, die 5 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 1 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 1 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 19 Zahlen (alle außer der 1) zu setzen, also = = = 3876.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.25, also ca. 25%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 50% entsteht. Es wird eine Stichprobe der Menge 91 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 46 defekte Chips enthalten sind.
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=91 und p=0.5.
= =0.082959480347529≈ 0.083(TI-Befehl: binompdf(91,0.5,46))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.65.
Wenn P(X ≥ k) ≥ 0.65 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.65 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.65=0.35 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0 | ≈ 0 + 0 = 0 |
| 2 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 3 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 4 | ≈ 0.1 | ≈ 0.06 + 0.1 = 0.16 |
| 5 | ≈ 0.17 | ≈ 0.16 + 0.17 = 0.33 |
| 6 | ≈ 0.21 | ≈ 0.33 + 0.21 = 0.54 |
Während P(X ≤ 5) = 0.33 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 6) = 0.54 klar darüber.
Oder andersrum: P(X ≥ 6) = 1 - P(X ≤ 5) = 0.67 (die Summe der blauen Säulenhöhen von 6 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.65, während P(X ≥ 7) = 1 - P(X ≤ 6) = 0.46 (die Summe der Säulenhöhen von 7 bis 14) klar darunter liegt.
Somit ist das gesuchte k = 6.
kumulierte Binomialverteilung
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, nicht mehr als 17 Glückskekse mit einer Peproni zu erwischen, wenn man 79 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=79 und p=.
= + + +... + = 0.99211256932135 ≈ 0.9921(TI-Befehl: binomcdf(79,1/8,17))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 25 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 6 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=25 und p=.
(TI-Befehl: 1-binomcdf(25,,6))
Binomialverteilung l < X < k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,5. Wie groß ist die Wahrscheinlichkeit bei 89 Versuchen, mehr als 36 mal und höchstens 46 mal im grünen Bereich zu landen?
Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=89 und p=0.5.
=
(TI-Befehl: binomcdf(89,0.5,46) - binomcdf(89,0.5,36))
