nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,4 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips fehlerfrei funktionieren.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) q = 1 - 0,4 = 0,6 beträgt, muss die Wahrscheinlichkeit für 4 Nicht-Treffer bei 4 Versuchen P = 0,6 4 ≈ 0.1296 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 16 15 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 16 15 ) = 16! 15! ⋅ (16 - 15)! = 16! 15! ⋅ 1! = 16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
15! = 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 16 15 ) = 16 1

= 16

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 10 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 10987 = 5040 Möglichkeiten, die 10 Möglichkeiten (Eissorten) auf die 4 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 5040 24 = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 10987 4321 könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

210 = 10987 4321 = 10987 6 5 4 3 2 1 4321 6 5 4 3 2 1 = 10! 4! ⋅ 6! = ( 10 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 40 Kugeln, die mit den Zahlen 1 bis 40 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 40 7 ) = 40! 7! ⋅ 33! = 40⋅39⋅38⋅37⋅36⋅35⋅34 7⋅6⋅5⋅4⋅3⋅2⋅1 = 18643560 verschiedene Möglichkeiten, die 7 Kugeln aus den 40 zu ziehen, bzw. von 40 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 5 ist, bzw. wie viele Möglichkeiten es gibt, 7 von 40 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 5 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 6 Kreuze auf 39 Zahlen (alle außer der 5) zu setzen, also ( 39 6 ) = 39! 6! ⋅ 33! = 39⋅38⋅37⋅36⋅35⋅34 6⋅5⋅4⋅3⋅2⋅1 = 3262623.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 3262623 18643560 ≈ 0.175, also ca. 17.5%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 94 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 53 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=94 und p=0.5.

P0.594 (X=53) = ( 94 53 ) 0.553 0.541 =0.038388667062469≈ 0.0384
(TI-Befehl: binompdf(94,0.5,53))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.35.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.06≈ 0.02 + 0.06 = 0.08
3≈ 0.14≈ 0.08 + 0.14 = 0.22
4≈ 0.21≈ 0.22 + 0.21 = 0.43
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.22 also noch klar unter der geforderten Wahrscheinlichkeit von 0.35 liegt, ist P(X ≤ 4) = 0.43 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Würfel wird 90 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass nicht öfter als 11 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=90 und p= 1 6 .

P 1 6 90 (X11) = P 1 6 90 (X=0) + P 1 6 90 (X=1) + P 1 6 90 (X=2) +... + P 1 6 90 (X=11) = 0.16093909166897 ≈ 0.1609
(TI-Befehl: binomcdf(90,1/6,11))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 94 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 16 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=94 und p= 1 6 .

...
13
14
15
16
17
18
...

P 1 6 94 (X16) = 1 - P 1 6 94 (X15) = 0.506
(TI-Befehl: 1-binomcdf(94, 1 6 ,15))

Binomialverteilung l < X < k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 53 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 12, aber weniger als 15 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=53 und p=0.25.

P0.2553 (12X14) =

...
9
10
11
12
13
14
15
16
...

P0.2553 (X14) - P0.2553 (X11) ≈ 0.6622 - 0.2961 ≈ 0.3661
(TI-Befehl: binomcdf(53,0.25,14) - binomcdf(53,0.25,11))