nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,3 Ausschuss. Es werden nacheinander 4 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass dabei genau 3 Chips defekt sind.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass ein entnommener Chips defekt sind) beträgt p = 0,3, für einen Nicht-Treffer (also hier, dass ein entnommener Chips nicht defekt ist) beträgt sie q = 1 - 0,3 = 0,7. Wenn genau 3 Treffer unter den 4 Versuchen sein sollen, bedeutet das doch, dass es genau einen Nicht-Treffer unter den 4 Versuchen geben muss. Hier gibt es nun mehrere Möglichkeiten, wann dieser Nicht-Treffer eintritt:

NichtTreffer - Treffer - Treffer - Treffer (also der NichtTreffer im 1-ten Versuch)
Treffer - NichtTreffer - Treffer - Treffer (also der NichtTreffer im 2-ten Versuch)
Treffer - Treffer - NichtTreffer - Treffer (also der NichtTreffer im 3-ten Versuch)
Treffer - Treffer - Treffer - NichtTreffer (also der NichtTreffer im 4-ten Versuch)

Bei jedem dieser 4 Fälle ist die Wahrscheinlichkeit gleich, nämlich Pk = 0,7 · 0,3 3 .

Für die gesuchte Wahrscheinlichkeit aller 4 Fälle gilt somit P = 4 · 0,7 · 0,3 3 ≈ 0.0756 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 6 6 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 6 6 ) = 6! 6! ⋅ (6 - 6)! = 6! 6! ⋅ 0! = 6⋅5⋅4⋅3⋅2⋅1 6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 6 6 ) = 1 1

= 1

Binomialkoeffizient Anwendungen

Beispiel:

Bei einem Glücksspiel sind auf einem Schein 10 Felder abgedruckt. Von diesen 10 Felder soll sich der Spieler 5 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?

Lösung einblenden

Für die erste Stelle ist jedes Feld möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109876 = 30240 Möglichkeiten, die 10 Möglichkeiten (abgedruckte Felder) auf die 5 "Ziehungen" (angekreuzte Felder) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 54321 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 30240 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30240 120 = 252 Möglichkeiten für 5er-Gruppen, die aus 10 Elementen (abgedruckte Felder) gebildet werden.

Die hier durchgeführte Berechnung 109876 54321 könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

252 = 109876 54321 = 109876 5 4 3 2 1 54321 5 4 3 2 1 = 10! 5! ⋅ 5! = ( 10 5 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 10 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 30 6 ) = 30! 6! ⋅ 24! = 30⋅29⋅28⋅27⋅26⋅25 6⋅5⋅4⋅3⋅2⋅1 = 593775 verschiedene Möglichkeiten, die 6 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 10 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 10 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 29 Zahlen (alle außer der 10) zu setzen, also ( 29 5 ) = 29! 5! ⋅ 24! = 29⋅28⋅27⋅26⋅25 5⋅4⋅3⋅2⋅1 = 118755.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 118755 593775 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 54-mal gewürfelt. Es werden hierbei 6 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 6 6er bei 54 Würfen.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=54 und p= 1 6 .

P 1 6 54 (X=6) = ( 54 6 ) ( 1 6 )6 ( 5 6 )48 =0.087593004763406≈ 0.0876
(TI-Befehl: binompdf(54,1/6,6))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.06≈ 0 + 0.06 = 0.06
1≈ 0.19≈ 0.06 + 0.19 = 0.25
2≈ 0.28≈ 0.25 + 0.28 = 0.53
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.25 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 2) = 0.53 klar darüber.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 84 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so bis zu 14 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=84 und p=0.25.

P0.2584 (X14) = P0.2584 (X=0) + P0.2584 (X=1) + P0.2584 (X=2) +... + P0.2584 (X=14) = 0.046349295652112 ≈ 0.0463
(TI-Befehl: binomcdf(84,0.25,14))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,5. Wie groß ist die Wahrscheinlichkeit bei 61 Versuchen mehr als 27 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=61 und p=0.5.

...
25
26
27
28
29
30
...

P0.561 (X>27) = P0.561 (X28) = 1 - P0.561 (X27) = 0.7787
(TI-Befehl: 1-binomcdf(61,0.5,27))

Binomialverteilung l < X < k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 7 und höchstens 10 Glückskekse mit einer Peproni zu erwischen, wenn man 80 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=80 und p=0.125.

P0.12580 (8X10) =

...
5
6
7
8
9
10
11
12
...

P0.12580 (X10) - P0.12580 (X7) ≈ 0.5832 - 0.2023 ≈ 0.3809
(TI-Befehl: binomcdf(80,0.125,10) - binomcdf(80,0.125,7))