nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass nur im vierten Wurf eine "6" gewürfelt wird.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = 1 6 , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - 1 6 = 5 6 . Da ja der Treffer genau im vierten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 5 6 5 6 5 6 1 6 5 6 = 1 6 · ( 5 6 ) 4 ≈ 0.0804 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 4 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 4 ) = 10! 4! ⋅ (10 - 4)! = 10! 4! ⋅ 6! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 4⋅3⋅2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 10 4 ) = 10⋅9⋅8⋅7 4⋅3⋅2⋅1

= 10⋅9⋅2⋅7 3⋅2⋅1 (gekürzt mit 4)

= 10⋅3⋅2⋅7 2⋅1 (gekürzt mit 3)

= 10⋅3⋅7 1 (gekürzt mit 2)

= 210

Binomialkoeffizient Anwendungen

Beispiel:

Eine Eisdiele bietet 9 verschiedene Eissorten an. Rüdiger darf sich ein Eis mit 4 Kugeln zusammenstellen. Er möchte aber auf jeden Fall lauter verschiedene Eissorten in seinem Eis haben. Wieviele Möglichkeiten hat er sich solch ein Eis zusammenzustellen?

Lösung einblenden

Für die erste Stelle ist jede Eissorte möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Eissorte nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 9876 = 3024 Möglichkeiten, die 9 Möglichkeiten (Eissorten) auf die 4 "Ziehungen" (Kugeln) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Ananas - Birne - Citrone und Birne - Citrone - Ananas zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 3024 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 3024 24 = 126 Möglichkeiten für 4er-Gruppen, die aus 9 Elementen (Eissorten) gebildet werden.

Die hier durchgeführte Berechnung 9876 4321 könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

126 = 9876 4321 = 9876 5 4 3 2 1 4321 5 4 3 2 1 = 9! 4! ⋅ 5! = ( 9 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 20 4 ) = 20! 4! ⋅ 16! = 20⋅19⋅18⋅17 4⋅3⋅2⋅1 = 4845 verschiedene Möglichkeiten, die 4 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 5 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 20 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 5 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 19 Zahlen (alle außer der 5) zu setzen, also ( 19 3 ) = 19! 3! ⋅ 16! = 19⋅18⋅17 3⋅2⋅1 = 969.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 969 4845 ≈ 0.2, also ca. 20%.

Formel v. Bernoulli

Beispiel:

Es soll geprüft werden, ob die Würfel eines Casinos gezinkt sind.Dazu wird mit einem Würfel 47-mal gewürfelt. Es werden hierbei 12 6er erzielt.Berechnen Sie die Wahrscheinlichkeit für 12 6er bei 47 Würfen.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=47 und p= 1 6 .

P 1 6 47 (X=12) = ( 47 12 ) ( 1 6 )12 ( 5 6 )35 =0.040638654641743≈ 0.0406
(TI-Befehl: binompdf(47,1/6,12))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.01≈ 0 + 0.01 = 0.01
2≈ 0.03≈ 0.01 + 0.03 = 0.04
3≈ 0.09≈ 0.04 + 0.09 = 0.13
4≈ 0.17≈ 0.13 + 0.17 = 0.3
5≈ 0.22≈ 0.3 + 0.22 = 0.52
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 4) = 0.3 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 5) = 0.52 klar darüber.

Somit ist das gesuchte k = 5.

kumulierte Binomialverteilung

Beispiel:

Ein Fortbildungsteilnehmer ermüdet mit einer Wahrscheinlichkeit von 90%. An einer Fortbildung nehmen 75 Personen teil. Wie groß ist die Wahrscheinlichkeit, dass höchstens 63 Personen ermüden?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der ermüdeten Personen an. X ist binomialverteilt mit n=75 und p=0.9.

P0.975 (X63) = P0.975 (X=0) + P0.975 (X=1) + P0.975 (X=2) +... + P0.975 (X=63) = 0.068529198102803 ≈ 0.0685
(TI-Befehl: binomcdf(75,0.9,63))

Binomialverteilung X>=k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,87. Wie groß ist die Wahrscheinlichkeit dass er von 78 Versuchen mehr als 70 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=78 und p=0.87.

...
68
69
70
71
72
73
...

P0.8778 (X>70) = P0.8778 (X71) = 1 - P0.8778 (X70) = 0.1892
(TI-Befehl: 1-binomcdf(78,0.87,70))

Binomialverteilung l < X < k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,7. Wie groß ist die Wahrscheinlichkeit bei 55 Versuchen, mehr als 33 mal und höchstens 42 mal im grünen Bereich zu landen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=55 und p=0.7.

P0.755 (34X42) =

...
31
32
33
34
35
36
37
38
39
40
41
42
43
44
...

P0.755 (X42) - P0.755 (X33) ≈ 0.8823 - 0.0731 ≈ 0.8092
(TI-Befehl: binomcdf(55,0.7,42) - binomcdf(55,0.7,33))