Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass nur beim vierten Drehen der grüne Bereich erzielt wird.
Die Wahrscheinlichkeit für einen Treffer (also hier, dass in den grünen Bereich gedreht wird) beträgt p = 0,7, für einen Nicht-Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) beträgt sie q = 1 - 0,7 = . Da ja der Treffer genau im vierten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:
P = ⋅⋅⋅0,7⋅ = ≈ 0.0057 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
5! = 5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 2)
= 21
Binomialkoeffizient Anwendungen
Beispiel:
Bei einem Glücksspiel sind auf einem Schein 8 Felder abgedruckt. Von diesen 8 Felder soll sich der Spieler 2 Felder aussuchen und ankreuzen.Wieviele Möglichkeiten hat er hierfür?
Für die erste Stelle ist jedes Feld möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist das bereits als erstes gewählte Feld nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Feld1 - Feld3 - Feld6 und Feld3 - Feld6 - Feld1 zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (abgedruckte Felder) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 6! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
28 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 14 dabei ist?
Es gibt insgesamt = = = 177100 verschiedene Möglichkeiten, die 6 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 6 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 14 ist, bzw. wie viele Möglichkeiten es gibt, 6 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 14 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 5 Kreuze auf 24 Zahlen (alle außer der 14) zu setzen, also = = = 42504.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.24, also ca. 24%.
Formel v. Bernoulli
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 57 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 11 Fragen richtig beantwortet hat?
Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=57 und p=.
= =0.078736552355839≈ 0.0787(TI-Befehl: binompdf(57,1/4,11))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.3.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(X ≤ k) |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 2 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 3 | ≈ 0.13 | ≈ 0.06 + 0.13 = 0.19 |
| 4 | ≈ 0.21 | ≈ 0.19 + 0.21 = 0.4 |
Während P(X ≤ 3) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 4) = 0.4 klar darüber.
Somit ist das gesuchte k = 4.
kumulierte Binomialverteilung
Beispiel:
Ein Würfel wird 33 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass weniger als 4 mal eine 6 (p=1/6) geworfen wird?
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=33 und p=.
= = + + + = 0.17642716309495 ≈ 0.1764(TI-Befehl: binomcdf(33,1/6,3))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 84 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 22 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=84 und p=.
(TI-Befehl: 1-binomcdf(84,,21))
Binomialverteilung l < X < k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 1 und höchstens 7 Glückskekse mit einer Peproni zu erwischen, wenn man 51 Glückskekse kauft?
Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=51 und p=0.125.
=
(TI-Befehl: binomcdf(51,0.125,7) - binomcdf(51,0.125,1))
