nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,2 Ausschuss. Es werden nacheinander 5 Chips als Stichprobe entnommen. Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips fehlerfrei funktionieren.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) q = 1 - 0,2 = 0,8 beträgt, muss die Wahrscheinlichkeit für 5 Nicht-Treffer bei 5 Versuchen P = 0,8 5 ≈ 0.3277 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 11 5 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 11 5 ) = 11! 5! ⋅ (11 - 5)! = 11! 5! ⋅ 6! = 11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 5⋅4⋅3⋅2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 11 5 ) = 11⋅10⋅9⋅8⋅7 5⋅4⋅3⋅2⋅1

= 11⋅2⋅9⋅8⋅7 4⋅3⋅2⋅1 (gekürzt mit 5)

= 11⋅2⋅9⋅2⋅7 3⋅2⋅1 (gekürzt mit 4)

= 11⋅2⋅3⋅2⋅7 2⋅1 (gekürzt mit 3)

= 11⋅3⋅2⋅7 1 (gekürzt mit 2)

= 462

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 3 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 3er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 876 = 336 Möglichkeiten, die 8 Möglichkeiten (SchülerInnen) auf die 3 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 321 = 6 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 3er-Gruppe.

Wir müssen deswegen die 336 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 336 6 = 56 Möglichkeiten für 3er-Gruppen, die aus 8 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 876 321 könnte man mit 5! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

56 = 876 321 = 876 5 4 3 2 1 321 5 4 3 2 1 = 8! 3! ⋅ 5! = ( 8 3 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 8 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 17 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 8 ) = 35! 8! ⋅ 27! = 35⋅34⋅33⋅32⋅31⋅30⋅29⋅28 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 = 23535820 verschiedene Möglichkeiten, die 8 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 8 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 17 ist, bzw. wie viele Möglichkeiten es gibt, 8 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 17 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 7 Kreuze auf 34 Zahlen (alle außer der 17) zu setzen, also ( 34 7 ) = 34! 7! ⋅ 27! = 34⋅33⋅32⋅31⋅30⋅29⋅28 7⋅6⋅5⋅4⋅3⋅2⋅1 = 5379616.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 5379616 23535820 ≈ 0.2286, also ca. 22.86%.

Formel v. Bernoulli

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 92 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so genau 23 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=92 und p= 1 4 .

P 1 4 92 (X=23) = ( 92 23 ) ( 1 4 )23 ( 3 4 )69 =0.095677751176405≈ 0.0957
(TI-Befehl: binompdf(92,1/4,23))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.55.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.55 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.55 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.55=0.45 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.01≈ 0 + 0.01 = 0.01
1≈ 0.05≈ 0.01 + 0.05 = 0.06
2≈ 0.14≈ 0.06 + 0.14 = 0.2
3≈ 0.22≈ 0.2 + 0.22 = 0.42
4≈ 0.23≈ 0.42 + 0.23 = 0.65
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.42 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(X ≤ 4) = 0.65 klar darüber.

Oder andersrum: P(X ≥ 4) = 1 - P(X ≤ 3) = 0.58 (die Summe der blauen Säulenhöhen von 4 bis 13) ist klar über der geforderten Wahrscheinlichkeit von 0.55, während P(X ≥ 5) = 1 - P(X ≤ 4) = 0.35 (die Summe der Säulenhöhen von 5 bis 13) klar darunter liegt.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Zufallsexperiment wird 52 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p= 0,55. Wie groß ist dabei die Wahrscheinlichkeit, weniger als 31 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=52 und p=0.55.

P0.5552 (X<31) = P0.5552 (X30) = P0.5552 (X=0) + P0.5552 (X=1) + P0.5552 (X=2) +... + P0.5552 (X=30) = 0.70041499486514 ≈ 0.7004
(TI-Befehl: binomcdf(52,0.55,30))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 50 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mehr als 2 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=50 und p= 1 6 .

0
1
2
3
4
5
...

P 1 6 50 (X>2) = P 1 6 50 (X3) = 1 - P 1 6 50 (X2) = 0.9934
(TI-Befehl: 1-binomcdf(50, 1 6 ,2))

Binomialverteilung l < X < k

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,75 entsteht. Es wird eine Stichprobe der Menge 59 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 44 und höchstens 49 beträgt?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=59 und p=0.75.

P0.7559 (44X49) =

...
41
42
43
44
45
46
47
48
49
50
51
...

P0.7559 (X49) - P0.7559 (X43) ≈ 0.948 - 0.4016 ≈ 0.5464
(TI-Befehl: binomcdf(59,0.75,49) - binomcdf(59,0.75,43))