nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der ersten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 1-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 1-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,6 ≈ 0.6 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 5 3 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 5 3 ) = 5! 3! ⋅ (5 - 3)! = 5! 3! ⋅ 2! = 5⋅4⋅3⋅2⋅1 3⋅2⋅1 ⋅ 2⋅1
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 5 3 ) = 5⋅4 2⋅1

= 5⋅2 1 (gekürzt mit 2)

= 10

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 65 = 30 Möglichkeiten, die 6 Möglichkeiten (SchülerInnen) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30 2 = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 65 21 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 65 21 = 65 4 3 2 1 21 4 3 2 1 = 6! 2! ⋅ 4! = ( 6 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 7 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 4, die 5 und die 15 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 20 7 ) = 20! 7! ⋅ 13! = 20⋅19⋅18⋅17⋅16⋅15⋅14 7⋅6⋅5⋅4⋅3⋅2⋅1 = 77520 verschiedene Möglichkeiten, die 7 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 7 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 4, die 5 und die 15 sind, bzw. wie viele Möglichkeiten es gibt, 7 von 20 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 4, der 5 und der 15 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 17 Zahlen (alle außer der 4, der 5 und der 15) zu setzen, also ( 17 4 ) = 17! 4! ⋅ 13! = 17⋅16⋅15⋅14 4⋅3⋅2⋅1 = 2380.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 2380 77520 ≈ 0.0307, also ca. 3.07%.

Formel v. Bernoulli

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,05. Wie groß ist die Wahrscheinlichkeit dass er von 32 Versuchen genau 4 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=32 und p=0.05.

P0.0532 (X=4) = ( 32 4 ) 0.054 0.9528 =0.053451592461136≈ 0.0535
(TI-Befehl: binompdf(32,0.05,4))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.6.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.6 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.6 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.6=0.4 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.04≈ 0 + 0.04 = 0.04
1≈ 0.15≈ 0.04 + 0.15 = 0.19
2≈ 0.26≈ 0.19 + 0.26 = 0.45
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.19 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 2) = 0.45 klar darüber.

Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.81 (die Summe der blauen Säulenhöhen von 2 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.6, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.55 (die Summe der Säulenhöhen von 3 bis 11) klar darunter liegt.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,21 entsteht. Es wird eine Stichprobe der Menge 27 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 4 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=27 und p=0.21.

P0.2127 (X4) = P0.2127 (X=0) + P0.2127 (X=1) + P0.2127 (X=2) +... + P0.2127 (X=4) = 0.30222607581788 ≈ 0.3022
(TI-Befehl: binomcdf(27,0.21,4))

Binomialverteilung X>=k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,6. Wie groß ist die Wahrscheinlichkeit dass er von 25 Versuchen mehr als 16 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.6.

...
14
15
16
17
18
19
...

P0.625 (X>16) = P0.625 (X17) = 1 - P0.625 (X16) = 0.2735
(TI-Befehl: 1-binomcdf(25,0.6,16))

Binomialverteilung l < X < k

Beispiel:

Ein Zufallsexperiment wird 61 mal wiederholt. Jedesmal beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie groß ist dabei die Wahrscheinlichkeit, mindestens 22, aber höchstens 29 Treffer zu erzielen?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=61 und p=0.4.

P0.461 (22X29) =

...
19
20
21
22
23
24
25
26
27
28
29
30
31
...

P0.461 (X29) - P0.461 (X21) ≈ 0.9079 - 0.2255 ≈ 0.6824
(TI-Befehl: binomcdf(61,0.4,29) - binomcdf(61,0.4,21))