nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 15 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 15

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 15 = 1 : 15 ≈ 0.067

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.067 = 6.7%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 5 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 16 20 = 4 5

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 4 5 = 4 : 5 ≈ 0.8

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.8 = 80%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 4 Asse, 5 Könige, 8 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 5 + 8 + 3=20

Hieraus ergibt sich für ...

Ass: p= 4 20 = 1 5

König: p= 5 20 = 1 4

Dame: p= 8 20 = 2 5

Bube: p= 3 20

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 2 ; "nicht blau": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 1 4 = 3 4

EreignisP
blau -> blau 1 4
blau -> nicht blau 1 4
nicht blau -> blau 1 4
nicht blau -> nicht blau 1 4

Einzel-Wahrscheinlichkeiten: P("blau")= 1 2 ; P("nicht blau")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau' (P= 1 4 )
  • 'nicht blau'-'blau' (P= 1 4 )
  • 'blau'-'blau' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 + 1 4 = 3 4


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "mindestens 1 mal D"?

Lösung einblenden

Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'

Einzel-Wahrscheinlichkeiten :"D": 1 8 ; "nicht D": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal D' alle Möglichkeiten enthalten, außer eben kein 'D' bzw. 0 mal 'D'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'D')=1- 49 64 = 15 64

EreignisP
D -> D 1 64
D -> nicht D 7 64
nicht D -> D 7 64
nicht D -> nicht D 49 64

Einzel-Wahrscheinlichkeiten: P("D")= 1 8 ; P("nicht D")= 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'D'-'nicht D' (P= 7 64 )
  • 'nicht D'-'D' (P= 7 64 )
  • 'D'-'D' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 64 + 7 64 + 1 64 = 15 64


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 6 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 4 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 4 ; "nicht NWT": 3 4 ;

EreignisP
NWT -> NWT 5 92
NWT -> nicht NWT 9 46
nicht NWT -> NWT 9 46
nicht NWT -> nicht NWT 51 92

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 4 ; P("nicht NWT")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 51 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

51 92 = 51 92


Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 5 Schüler mit Musik-Profil und 7 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 5 ; "nicht NWT": 4 5 ;

EreignisP
NWT -> NWT 3 95
NWT -> nicht NWT 16 95
nicht NWT -> NWT 16 95
nicht NWT -> nicht NWT 12 19

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 5 ; P("nicht NWT")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 16 95 )
'nicht NWT'-'NWT' (P= 16 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 95 + 16 95 = 32 95


nur Summen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 45
1 -> 2 4 45
1 -> 3 4 45
2 -> 1 4 45
2 -> 2 2 15
2 -> 3 8 45
3 -> 1 4 45
3 -> 2 8 45
3 -> 3 2 15

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 2 5 ; P("3")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 4 45 )
'2'-'1' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 13 3 12 9 11
= 1 13 3 3 11
= 9 143

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 10 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '4'-'6' (P= 1 36 )
  • '6'-'4' (P= 1 36 )
  • '5'-'5' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 = 1 12