nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 32 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 32

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 32 = 1 : 32 ≈ 0.031

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.031 = 3.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 10 Kugeln, die mit Zahlen 1 bis 10 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 2 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 10, die kleiner als 2 sind, suchern, finden wir eben die Zahlen von 1 bis 1,
also insgesamt 1 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(kleiner als 2) = 1 10

Als Dezimalzahl ergibt das: P(kleiner als 2) = 1 10 = 1 : 10 ≈ 0.1

Als Prozentzahl ergibt das: P(kleiner als 2) ≈ 0.1 = 10%

Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 1 Schülerinnen und Schüler den römisch-katholischen Religionsunterricht, 5 den evangelischen, und 4 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 5 + 4=10

Hieraus ergibt sich für ...

rk: p= 1 10

ev: p= 5 10 = 1 2

Eth: p= 4 10 = 2 5

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Zahl"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 6 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 12
1 -> 3 1 18
2 -> 1 1 12
2 -> 2 1 4
2 -> 3 1 6
3 -> 1 1 18
3 -> 2 1 6
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 2 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 12 )
  • '2'-'1' (P= 1 12 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 + 1 12 = 1 6


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'andere'-'andere'-'andere' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 28 = 11 28


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 9 rote, 2 blaue , 4 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 18 95
rot -> blau 9 190
rot -> gelb 9 95
rot -> schwarz 9 76
blau -> rot 9 190
blau -> blau 1 190
blau -> gelb 2 95
blau -> schwarz 1 38
gelb -> rot 9 95
gelb -> blau 2 95
gelb -> gelb 3 95
gelb -> schwarz 1 19
schwarz -> rot 9 76
schwarz -> blau 1 38
schwarz -> gelb 1 19
schwarz -> schwarz 1 19

Einzel-Wahrscheinlichkeiten: P("rot")= 9 20 ; P("blau")= 1 10 ; P("gelb")= 1 5 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 9 190 )
'blau'-'rot' (P= 9 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 190 + 9 190 = 9 95


nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 4 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 16 )
  • '3'-'1' (P= 1 16 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 16 = 3 16


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 2 17 15 16
= 3 3 1 17 5 16
= 5 272

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 5 Schüler mit sprachlichem Profil, 2 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 2 5 ; "nicht NWT": 3 5 ;

EreignisP
NWT -> NWT 14 95
NWT -> nicht NWT 24 95
nicht NWT -> NWT 24 95
nicht NWT -> nicht NWT 33 95

Einzel-Wahrscheinlichkeiten: P("NWT")= 2 5 ; P("nicht NWT")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 33 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

33 95 = 33 95