Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 14 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 14 ≈ 0.071
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.071 = 7.1%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 15 Kugeln, die mit Zahlen 1 bis 15 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 13 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 15, die größer als 13 sind, suchern, finden wir:
{14, 15}, also insgesamt
2 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(größer als 13) =
Als Dezimalzahl ergibt das: P(größer als 13) = = 2 : 15 ≈ 0.133
Als Prozentzahl ergibt das: P(größer als 13) ≈ 0.133 = 13.3%
Zufallsexperiment (einstufig)
Beispiel:
Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl genau einen, genau zwei, genau drei oder genau vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6
Hieraus ergibt sich für ...
1: p=
2: p= =
3: p=
4: p=
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'gelb')=1- =
| Ereignis | P |
|---|---|
| gelb -> gelb | |
| gelb -> nicht gelb | |
| nicht gelb -> gelb | |
| nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: P("gelb")=; P("nicht gelb")=;
Die relevanten Pfade sind:- 'gelb'-'nicht gelb' (P=)
- 'nicht gelb'-'gelb' (P=)
- 'nicht gelb'-'nicht gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'
Einzel-Wahrscheinlichkeiten :"3er-Zahl": ; "nicht 3er-Zahl": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben kein '3er-Zahl' bzw. 0 mal '3er-Zahl'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '3er-Zahl')=1- =
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er-Zahl")=;
Die relevanten Pfade sind:- '3er-Zahl'-'nicht 3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'3er-Zahl' (P=)
- '3er-Zahl'-'3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Dame')=1- =
| Ereignis | P |
|---|---|
| Dame -> Dame | |
| Dame -> nicht Dame | |
| nicht Dame -> Dame | |
| nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: P("Dame")=; P("nicht Dame")=;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
'nicht Dame'-'nicht Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 10 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 10 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=; P("5")=; P("6")=;
Die relevanten Pfade sind:- '4'-'6' (P=)
- '6'-'4' (P=)
- '5'-'5' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 11 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
