nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 3 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 3

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 3 = 1 : 3 ≈ 0.333

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.333 = 33.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 20 Kugeln, die mit Zahlen 1 bis 20 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 5 teilbar ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle durch 5 teilbaren Zahlen zwischen 1 und 20 suchern, finden wir:
{5, 10, 15, 20}, also insgesamt 4 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(teilbar durch 5) = 4 20 = 1 5

Als Dezimalzahl ergibt das: P(teilbar durch 5) = 1 5 = 1 : 5 ≈ 0.2

Als Prozentzahl ergibt das: P(teilbar durch 5) ≈ 0.2 = 20%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 7 blaue, 10 grüne, 2 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 10 + 2 + 5=24

Hieraus ergibt sich für ...

blau: p= 7 24

grün: p= 10 24 = 5 12

gelb: p= 2 24 = 1 12

rot: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 49 64
rot -> blau 7 64
blau -> rot 7 64
blau -> blau 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 7 8 ; P("blau")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 49 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

49 64 = 49 64


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 1 27 = 26 27

EreignisP
rot -> rot -> rot 8 27
rot -> rot -> nicht rot 4 27
rot -> nicht rot -> rot 4 27
rot -> nicht rot -> nicht rot 2 27
nicht rot -> rot -> rot 4 27
nicht rot -> rot -> nicht rot 2 27
nicht rot -> nicht rot -> rot 2 27
nicht rot -> nicht rot -> nicht rot 1 27

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("nicht rot")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot'-'nicht rot' (P= 2 27 )
  • 'nicht rot'-'rot'-'nicht rot' (P= 2 27 )
  • 'nicht rot'-'nicht rot'-'rot' (P= 2 27 )
  • 'rot'-'rot'-'nicht rot' (P= 4 27 )
  • 'rot'-'nicht rot'-'rot' (P= 4 27 )
  • 'nicht rot'-'rot'-'rot' (P= 4 27 )
  • 'rot'-'rot'-'rot' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 3 blaue , 4 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 5 ; "nicht rot": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 33 95 = 62 95

EreignisP
rot -> rot 14 95
rot -> nicht rot 24 95
nicht rot -> rot 24 95
nicht rot -> nicht rot 33 95

Einzel-Wahrscheinlichkeiten: P("rot")= 2 5 ; P("nicht rot")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 24 95 )
'nicht rot'-'rot' (P= 24 95 )
'rot'-'rot' (P= 14 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

24 95 + 24 95 + 14 95 = 62 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 8 Karten der Farbe Kreuz, 9 der Farbe Pik, 5 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Kreuz und 1 mal Pik"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 7 75
Kreuz -> Pik 3 25
Kreuz -> Herz 1 15
Kreuz -> Karo 1 25
Pik -> Kreuz 3 25
Pik -> Pik 3 25
Pik -> Herz 3 40
Pik -> Karo 9 200
Herz -> Kreuz 1 15
Herz -> Pik 3 40
Herz -> Herz 1 30
Herz -> Karo 1 40
Karo -> Kreuz 1 25
Karo -> Pik 9 200
Karo -> Herz 1 40
Karo -> Karo 1 100

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 8 25 ; P("Pik")= 9 25 ; P("Herz")= 1 5 ; P("Karo")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Pik' (P= 3 25 )
'Pik'-'Kreuz' (P= 3 25 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 = 6 25


nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 5 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 3 8 ; P("2")= 1 4 ; P("3")= 1 4 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'4' (P= 3 64 )
  • '4'-'1' (P= 3 64 )
  • '2'-'3' (P= 1 16 )
  • '3'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 1 16 + 1 16 = 7 32


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 11 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 13 11 12
= 1 13 11 6
= 11 78

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369