Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 32 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 32 ≈ 0.031
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.031 = 3.1%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 6 Kugeln, die mit Zahlen 1 bis 6 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Primzahlen zwischen 1 und 6 suchern, finden wir:
{2, 3, 5}, also insgesamt
3 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(Primzahl) = =
Als Dezimalzahl ergibt das: P(Primzahl) = = 1 : 2 ≈ 0.5
Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.5 = 50%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 6 blaue, 5 grüne, 1 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 5 + 1 + 3=15
Hieraus ergibt sich für ...
blau: p= =
grün: p= =
gelb: p=
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "1 mal Zahl und 2 mal Wappen"?
| Ereignis | P |
|---|---|
| Zahl -> Zahl -> Zahl | |
| Zahl -> Zahl -> Wappen | |
| Zahl -> Wappen -> Zahl | |
| Zahl -> Wappen -> Wappen | |
| Wappen -> Zahl -> Zahl | |
| Wappen -> Zahl -> Wappen | |
| Wappen -> Wappen -> Zahl | |
| Wappen -> Wappen -> Wappen |
Einzel-Wahrscheinlichkeiten: P("Zahl")=; P("Wappen")=;
Die relevanten Pfade sind:- 'Zahl'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Zahl'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> höher | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> höher | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> höher | |
| höher -> 1 | |
| höher -> 2 | |
| höher -> 3 | |
| höher -> höher |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("höher")=;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'3' (P=)
- '3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 6 blaue , 9 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal gelb"?
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal gelb' alle Möglichkeiten enthalten, außer eben kein 'gelb' bzw. 0 mal 'gelb'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'gelb')=1- =
| Ereignis | P |
|---|---|
| gelb -> gelb | |
| gelb -> nicht gelb | |
| nicht gelb -> gelb | |
| nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: P("gelb")=; P("nicht gelb")=;
Die relevanten Pfade sind:
'gelb'-'nicht gelb' (P=)
'nicht gelb'-'gelb' (P=)
'gelb'-'gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?
Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'
Einzel-Wahrscheinlichkeiten :"9": ; "nicht 9": ;
| Ereignis | P |
|---|---|
| 9 -> 9 | |
| 9 -> nicht 9 | |
| nicht 9 -> 9 | |
| nicht 9 -> nicht 9 |
Einzel-Wahrscheinlichkeiten: P("9")=; P("nicht 9")=;
Die relevanten Pfade sind:
'9'-'9' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim -> prim | |
| prim -> prim -> nicht prim | |
| prim -> nicht prim -> prim | |
| prim -> nicht prim -> nicht prim | |
| nicht prim -> prim -> prim | |
| nicht prim -> prim -> nicht prim | |
| nicht prim -> nicht prim -> prim | |
| nicht prim -> nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'nicht prim'-'nicht prim' (P=)
- 'nicht prim'-'prim'-'nicht prim' (P=)
- 'nicht prim'-'nicht prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
