nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 12 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 12

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 12 = 1 : 12 ≈ 0.083

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.083 = 8.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 13 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 5 13

Als Dezimalzahl ergibt das: P(oranger Sektor) = 5 13 = 5 : 13 ≈ 0.385

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.385 = 38.5%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 9 Asse, 9 Könige, 1 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 9 + 1 + 5=24

Hieraus ergibt sich für ...

Ass: p= 9 24 = 3 8

König: p= 9 24 = 3 8

Dame: p= 1 24

Bube: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 5 rote, 4 gelbe, 10 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 5 24 ; "nicht rot": 19 24 ;

EreignisP
rot -> rot 25 576
rot -> nicht rot 95 576
nicht rot -> rot 95 576
nicht rot -> nicht rot 361 576

Einzel-Wahrscheinlichkeiten: P("rot")= 5 24 ; P("nicht rot")= 19 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 25 576 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 576 = 25 576


Ziehen mit Zurücklegen

Beispiel:

Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> höher 1 12
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> höher 1 12
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> höher 1 12
höher -> 1 1 12
höher -> 2 1 12
höher -> 3 1 12
höher -> höher 1 4

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("höher")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 36 )
  • '3'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 5 vom Typ Herz, 10 vom Typ Pik und 4 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 5 138
Kreuz -> Herz 25 552
Kreuz -> Pik 25 276
Kreuz -> Karo 5 138
Herz -> Kreuz 25 552
Herz -> Herz 5 138
Herz -> Pik 25 276
Herz -> Karo 5 138
Pik -> Kreuz 25 276
Pik -> Herz 25 276
Pik -> Pik 15 92
Pik -> Karo 5 69
Karo -> Kreuz 5 138
Karo -> Herz 5 138
Karo -> Pik 5 69
Karo -> Karo 1 46

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 5 24 ; P("Herz")= 5 24 ; P("Pik")= 5 12 ; P("Karo")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 5 138 )
'Herz'-'Herz' (P= 5 138 )
'Pik'-'Pik' (P= 15 92 )
'Karo'-'Karo' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 138 + 5 138 + 15 92 + 1 46 = 71 276


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 3 Kugeln mit einer Eins beschriftet, 8 Kugeln mit einer Zwei, 9 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 92
1 -> 2 1 23
1 -> 3 9 184
1 -> 4 1 46
2 -> 1 1 23
2 -> 2 7 69
2 -> 3 3 23
2 -> 4 4 69
3 -> 1 9 184
3 -> 2 3 23
3 -> 3 3 23
3 -> 4 3 46
4 -> 1 1 46
4 -> 2 4 69
4 -> 3 3 46
4 -> 4 1 46

Einzel-Wahrscheinlichkeiten: P("1")= 1 8 ; P("2")= 1 3 ; P("3")= 3 8 ; P("4")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 3 46 )
'4'-'3' (P= 3 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 46 + 3 46 = 3 23


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 9 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'6' (P= 1 36 )
  • '6'-'3' (P= 1 36 )
  • '4'-'5' (P= 1 36 )
  • '5'-'4' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 14 3 13 2 12 10 11
= 1 7 1 13 1 10 11
= 10 1001

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 2 an eine Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 7 24
Mädchen -> Mädchen -> Jungs 7 40
Mädchen -> Jungs -> Mädchen 7 40
Mädchen -> Jungs -> Jungs 7 120
Jungs -> Mädchen -> Mädchen 7 40
Jungs -> Mädchen -> Jungs 7 120
Jungs -> Jungs -> Mädchen 7 120
Jungs -> Jungs -> Jungs 1 120

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 7 10 ; P("Jungs")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Jungs' (P= 7 40 )
'Mädchen'-'Jungs'-'Mädchen' (P= 7 40 )
'Jungs'-'Mädchen'-'Mädchen' (P= 7 40 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 40 + 7 40 + 7 40 = 21 40