Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 17 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 17 ≈ 0.059
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.059 = 5.9%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 8 Kugeln, die mit Zahlen 1 bis 8 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 5 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 8, die kleiner als 5 sind, suchern, finden wir eben die Zahlen von 1 bis
4,
also insgesamt 4 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 5) = =
Als Dezimalzahl ergibt das: P(kleiner als 5) = = 1 : 2 ≈ 0.5
Als Prozentzahl ergibt das: P(kleiner als 5) ≈ 0.5 = 50%
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 3 Asse, 10 Könige, 7 Damen, und 4 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 10 + 7 + 4=24
Hieraus ergibt sich für ...
Ass: p= =
König: p= =
Dame: p=
Bube: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim -> prim | |
| prim -> prim -> nicht prim | |
| prim -> nicht prim -> prim | |
| prim -> nicht prim -> nicht prim | |
| nicht prim -> prim -> prim | |
| nicht prim -> prim -> nicht prim | |
| nicht prim -> nicht prim -> prim | |
| nicht prim -> nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal grün"?
Da ja ausschließlich nach 'grün' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'grün' und 'nicht grün'
Einzel-Wahrscheinlichkeiten :"grün": ; "nicht grün": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal grün' alle Möglichkeiten enthalten, außer eben kein 'grün' bzw. 0 mal 'grün'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'grün')=1- =
| Ereignis | P |
|---|---|
| grün -> grün | |
| grün -> nicht grün | |
| nicht grün -> grün | |
| nicht grün -> nicht grün |
Einzel-Wahrscheinlichkeiten: P("grün")=; P("nicht grün")=;
Die relevanten Pfade sind:- 'grün'-'nicht grün' (P=)
- 'nicht grün'-'grün' (P=)
- 'grün'-'grün' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 8 vom Typ Herz, 9 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:
'1'-'3' (P=)
'3'-'1' (P=)
'2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=; P("5")=; P("6")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 3 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 1-12"?
Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'
Einzel-Wahrscheinlichkeiten :"1-12": ; "nicht 1-12": ;
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> nicht 1-12 | |
| nicht 1-12 -> 1-12 | |
| nicht 1-12 -> nicht 1-12 |
Einzel-Wahrscheinlichkeiten: P("1-12")=; P("nicht 1-12")=;
Die relevanten Pfade sind:- '1-12'-'1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
