nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 8 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 8

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 8 = 1 : 8 ≈ 0.125

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.125 = 12.5%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 6 Kugeln, die mit Zahlen 1 bis 6 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Primzahlen zwischen 1 und 6 suchern, finden wir:
{2, 3, 5}, also insgesamt 3 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(Primzahl) = 3 6 = 1 2

Als Dezimalzahl ergibt das: P(Primzahl) = 1 2 = 1 : 2 ≈ 0.5

Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.5 = 50%

Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen Viertelkreis => p= 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Zahl"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "mindestens 1 mal D"?

Lösung einblenden

Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'

Einzel-Wahrscheinlichkeiten :"D": 1 8 ; "nicht D": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal D' alle Möglichkeiten enthalten, außer eben kein 'D' bzw. 0 mal 'D'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'D')=1- 49 64 = 15 64

EreignisP
D -> D 1 64
D -> nicht D 7 64
nicht D -> D 7 64
nicht D -> nicht D 49 64

Einzel-Wahrscheinlichkeiten: P("D")= 1 8 ; P("nicht D")= 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'D'-'nicht D' (P= 7 64 )
  • 'nicht D'-'D' (P= 7 64 )
  • 'D'-'D' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 64 + 7 64 + 1 64 = 15 64


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 7 blaue , 10 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 10 ; "nicht schwarz": 9 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'schwarz')=1- 1 145 = 144 145

EreignisP
schwarz -> schwarz 1 145
schwarz -> nicht schwarz 27 290
nicht schwarz -> schwarz 27 290
nicht schwarz -> nicht schwarz 117 145

Einzel-Wahrscheinlichkeiten: P("schwarz")= 1 10 ; P("nicht schwarz")= 9 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 27 290 )
'nicht schwarz'-'schwarz' (P= 27 290 )
'nicht schwarz'-'nicht schwarz' (P= 117 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 290 + 27 290 + 117 145 = 144 145


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 120
rot -> rot -> blau 7 120
rot -> blau -> rot 7 120
rot -> blau -> blau 7 40
blau -> rot -> rot 7 120
blau -> rot -> blau 7 40
blau -> blau -> rot 7 40
blau -> blau -> blau 7 24

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("blau")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'blau' (P= 7 120 )
'rot'-'blau'-'rot' (P= 7 120 )
'blau'-'rot'-'rot' (P= 7 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 120 + 7 120 + 7 120 = 7 40


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 36 )
  • '2'-'1' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 8 3 7 4 6
= 2 2 1 7 1
= 1 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 2 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 3 7
1 -> 2 2 21
1 -> 3 1 7
2 -> 1 2 21
2 -> 2 1 105
2 -> 3 1 35
3 -> 1 1 7
3 -> 2 1 35
3 -> 3 1 35

Einzel-Wahrscheinlichkeiten: P("1")= 2 3 ; P("2")= 2 15 ; P("3")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 1 7 )
'3'-'1' (P= 1 7 )
'2'-'2' (P= 1 105 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 + 1 105 = 31 105