nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 4 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 4

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 4 = 1 : 4 ≈ 0.25

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.25 = 25%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 17 Kugeln, die mit Zahlen 1 bis 17 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 14 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 17, die größer als 14 sind, suchern, finden wir:
{15, 16, 17}, also insgesamt 3 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 14) = 3 17

Als Dezimalzahl ergibt das: P(größer als 14) = 3 17 = 3 : 17 ≈ 0.176

Als Prozentzahl ergibt das: P(größer als 14) ≈ 0.176 = 17.6%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 1 blaue, 3 grüne, 1 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 5=10

Hieraus ergibt sich für ...

blau: p= 1 10

grün: p= 3 10

gelb: p= 1 10

rot: p= 5 10 = 1 2

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 2 rote, 10 gelbe, 10 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 4 625
rot -> blau 4 125
rot -> gelb 4 125
rot -> schwarz 6 625
blau -> rot 4 125
blau -> blau 4 25
blau -> gelb 4 25
blau -> schwarz 6 125
gelb -> rot 4 125
gelb -> blau 4 25
gelb -> gelb 4 25
gelb -> schwarz 6 125
schwarz -> rot 6 625
schwarz -> blau 6 125
schwarz -> gelb 6 125
schwarz -> schwarz 9 625

Einzel-Wahrscheinlichkeiten: P("rot")= 2 25 ; P("blau")= 2 5 ; P("gelb")= 2 5 ; P("schwarz")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 4 125 )
  • 'blau'-'rot' (P= 4 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 125 + 4 125 = 8 125


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 342 1369 )
  • 'nicht rot'-'rot' (P= 342 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 = 684 1369


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'andere'-'andere' (P= 11 70 )
'andere'-'deutsch'-'andere' (P= 11 70 )
'andere'-'andere'-'deutsch' (P= 11 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 = 33 70


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 10 vom Typ Kreuz, 3 vom Typ Herz, 6 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 15 92
Kreuz -> Herz 5 92
Kreuz -> Pik 5 46
Kreuz -> Karo 25 276
Herz -> Kreuz 5 92
Herz -> Herz 1 92
Herz -> Pik 3 92
Herz -> Karo 5 184
Pik -> Kreuz 5 46
Pik -> Herz 3 92
Pik -> Pik 5 92
Pik -> Karo 5 92
Karo -> Kreuz 25 276
Karo -> Herz 5 184
Karo -> Pik 5 92
Karo -> Karo 5 138

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 5 12 ; P("Herz")= 1 8 ; P("Pik")= 1 4 ; P("Karo")= 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 15 92 )
'Herz'-'Herz' (P= 1 92 )
'Pik'-'Pik' (P= 5 92 )
'Karo'-'Karo' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 92 + 1 92 + 5 92 + 5 138 = 73 276


nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 7 20 ; "nicht 3": 13 20 ;

EreignisP
3 -> 3 21 190
3 -> nicht 3 91 380
nicht 3 -> 3 91 380
nicht 3 -> nicht 3 39 95

Einzel-Wahrscheinlichkeiten: P("3")= 7 20 ; P("nicht 3")= 13 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 = 21 190


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 7 2 6 4 5
= 1 7 2 2 5
= 4 35

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(