Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 9 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 9 ≈ 0.111
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.111 = 11.1%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 4 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 4 ≈ 0.25
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.25 = 25%
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 9 Schülerinnen und Schüler den römisch-katholischen Religionsunterricht, 10 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 10 + 5=24
Hieraus ergibt sich für ...
rk: p= =
ev: p= =
Eth: p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote, 6 gelbe, 5 blaue und 7 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'
Einzel-Wahrscheinlichkeiten :"D": ; "nicht D": ;
| Ereignis | P |
|---|---|
| D -> D | |
| D -> nicht D | |
| nicht D -> D | |
| nicht D -> nicht D |
Einzel-Wahrscheinlichkeiten: P("D")=; P("nicht D")=;
Die relevanten Pfade sind:- 'D'-'nicht D' (P=)
- 'nicht D'-'D' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 10 vom Typ Kreuz, 6 vom Typ Herz, 10 vom Typ Pik und 4 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("8")=; P("9")=;
Die relevanten Pfade sind:
'7'-'8' (P=)
'8'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=; P("5")=; P("6")=;
Die relevanten Pfade sind:- '1'-'6' (P=)
- '6'-'1' (P=)
- '2'-'5' (P=)
- '5'-'2' (P=)
- '3'-'4' (P=)
- '4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: P("König")=; P("nicht König")=;
Die relevanten Pfade sind:
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
