nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 4 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 4

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 4 = 1 : 4 ≈ 0.25

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.25 = 25%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 4 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 5 20 = 1 4

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 4 = 1 : 4 ≈ 0.25

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.25 = 25%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 1 blaue, 9 grüne, 9 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 9 + 9 + 5=24

Hieraus ergibt sich für ...

blau: p= 1 24

grün: p= 9 24 = 3 8

gelb: p= 9 24 = 3 8

rot: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Zahl' alle Möglichkeiten enthalten, außer eben 3 mal 'Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Zahl')=1- 1 8 = 7 8

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("nicht Zahl")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Teiler')=1- 1 9 = 8 9

EreignisP
Teiler -> Teiler 4 9
Teiler -> nicht Teiler 2 9
nicht Teiler -> Teiler 2 9
nicht Teiler -> nicht Teiler 1 9

Einzel-Wahrscheinlichkeiten: P("Teiler")= 2 3 ; P("nicht Teiler")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'nicht Teiler' (P= 2 9 )
  • 'nicht Teiler'-'Teiler' (P= 2 9 )
  • 'Teiler'-'Teiler' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 2 ; "nicht Ass": 1 2 ;

EreignisP
Ass -> Ass 3 14
Ass -> nicht Ass 2 7
nicht Ass -> Ass 2 7
nicht Ass -> nicht Ass 3 14

Einzel-Wahrscheinlichkeiten: P("Ass")= 1 2 ; P("nicht Ass")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Ass' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 = 3 14


Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 4 15 ; "nicht NWT": 11 15 ;

EreignisP
NWT -> NWT 28 435
NWT -> nicht NWT 88 435
nicht NWT -> NWT 88 435
nicht NWT -> nicht NWT 77 145

Einzel-Wahrscheinlichkeiten: P("NWT")= 4 15 ; P("nicht NWT")= 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 28 435 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

28 435 = 28 435


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 4 ; "nicht 9": 3 4 ;

EreignisP
9 -> 9 1 28
9 -> nicht 9 3 14
nicht 9 -> 9 3 14
nicht 9 -> nicht 9 15 28

Einzel-Wahrscheinlichkeiten: P("9")= 1 4 ; P("nicht 9")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 9 64
rot -> blau 3 32
rot -> gelb 3 32
rot -> schwarz 3 64
blau -> rot 3 32
blau -> blau 1 16
blau -> gelb 1 16
blau -> schwarz 1 32
gelb -> rot 3 32
gelb -> blau 1 16
gelb -> gelb 1 16
gelb -> schwarz 1 32
schwarz -> rot 3 64
schwarz -> blau 1 32
schwarz -> gelb 1 32
schwarz -> schwarz 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 3 8 ; P("blau")= 1 4 ; P("gelb")= 1 4 ; P("schwarz")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'gelb' (P= 3 32 )
  • 'gelb'-'rot' (P= 3 32 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 = 3 16