Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 24 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 24 ≈ 0.042
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.042 = 4.2%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 8 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 3 : 8 ≈ 0.375
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.375 = 37.5%
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 7 Schülerinnen und Schüler den römisch-katholischen Religionsunterricht, 7 den evangelischen, und 6 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 7 + 6=20
Hieraus ergibt sich für ...
rk: p=
ev: p=
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
rot -> rot | |
rot -> blau | |
rot -> gelb | |
blau -> rot | |
blau -> blau | |
blau -> gelb | |
gelb -> rot | |
gelb -> blau | |
gelb -> gelb |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=; P("gelb")=;
Die relevanten Pfade sind:- 'rot'-'blau' (P=)
- 'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
Ereignis | P |
---|---|
blau -> blau -> blau | |
blau -> blau -> nicht blau | |
blau -> nicht blau -> blau | |
blau -> nicht blau -> nicht blau | |
nicht blau -> blau -> blau | |
nicht blau -> blau -> nicht blau | |
nicht blau -> nicht blau -> blau | |
nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'nicht blau'-'nicht blau' (P=)
- 'nicht blau'-'blau'-'nicht blau' (P=)
- 'nicht blau'-'nicht blau'-'blau' (P=)
- 'blau'-'blau'-'nicht blau' (P=)
- 'blau'-'nicht blau'-'blau' (P=)
- 'nicht blau'-'blau'-'blau' (P=)
- 'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal König und 1 mal Dame"?
Ereignis | P |
---|---|
Ass -> Ass | |
Ass -> König | |
Ass -> Dame | |
König -> Ass | |
König -> König | |
König -> Dame | |
Dame -> Ass | |
Dame -> König | |
Dame -> Dame |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("König")=; P("Dame")=;
Die relevanten Pfade sind:
'König'-'Dame' (P=)
'Dame'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 9 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:
'2'-'3' (P=)
'3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=;
Die relevanten Pfade sind:- '3'-'4' (P=)
- '4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal 13-24"?
Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'
Einzel-Wahrscheinlichkeiten :"13-24": ; "nicht 13-24": ;
Ereignis | P |
---|---|
13-24 -> 13-24 | |
13-24 -> nicht 13-24 | |
nicht 13-24 -> 13-24 | |
nicht 13-24 -> nicht 13-24 |
Einzel-Wahrscheinlichkeiten: P("13-24")=; P("nicht 13-24")=;
Die relevanten Pfade sind:- '13-24'-'nicht 13-24' (P=)
- 'nicht 13-24'-'13-24' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =