Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 8 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 8 ≈ 0.125
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.125 = 12.5%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 10 Kugeln, die mit Zahlen 1 bis 10 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 2 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 10, die kleiner als 2 sind, suchern, finden wir eben die Zahlen von 1 bis
1,
also insgesamt 1 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 2) =
Als Dezimalzahl ergibt das: P(kleiner als 2) = = 1 : 10 ≈ 0.1
Als Prozentzahl ergibt das: P(kleiner als 2) ≈ 0.1 = 10%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 7 blaue, 4 grüne, 10 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 4 + 10 + 3=24
Hieraus ergibt sich für ...
blau: p=
grün: p= =
gelb: p= =
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Zahl"?
Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'
Einzel-Wahrscheinlichkeiten :"Zahl": ; "nicht Zahl": ;
Ereignis | P |
---|---|
Zahl -> Zahl -> Zahl | |
Zahl -> Zahl -> nicht Zahl | |
Zahl -> nicht Zahl -> Zahl | |
Zahl -> nicht Zahl -> nicht Zahl | |
nicht Zahl -> Zahl -> Zahl | |
nicht Zahl -> Zahl -> nicht Zahl | |
nicht Zahl -> nicht Zahl -> Zahl | |
nicht Zahl -> nicht Zahl -> nicht Zahl |
Einzel-Wahrscheinlichkeiten: P("Zahl")=; P("nicht Zahl")=;
Die relevanten Pfade sind:- 'Zahl'-'nicht Zahl'-'nicht Zahl' (P=)
- 'nicht Zahl'-'Zahl'-'nicht Zahl' (P=)
- 'nicht Zahl'-'nicht Zahl'-'Zahl' (P=)
- 'nicht Zahl'-'nicht Zahl'-'nicht Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'
Einzel-Wahrscheinlichkeiten :"3er-Zahl": ; "nicht 3er-Zahl": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal '3er-Zahl')=1- =
Ereignis | P |
---|---|
3er-Zahl -> 3er-Zahl | |
3er-Zahl -> nicht 3er-Zahl | |
nicht 3er-Zahl -> 3er-Zahl | |
nicht 3er-Zahl -> nicht 3er-Zahl |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er-Zahl")=;
Die relevanten Pfade sind:- '3er-Zahl'-'nicht 3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 6 Schüler mit sprachlichem Profil, 9 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Ereignis | P |
---|---|
NWT -> NWT | |
NWT -> nicht NWT | |
nicht NWT -> NWT | |
nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'NWT'-'NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer 8-ten Klasse gibt es 3 Schüler mit NWT-Profil, 6 Schüler mit sprachlichem Profil, 5 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Ereignis | P |
---|---|
NWT -> NWT | |
NWT -> nicht NWT | |
nicht NWT -> NWT | |
nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'nicht NWT'-'nicht NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
ohne Zurücklegen (einfach)
Beispiel:
Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?
Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'
Einzel-Wahrscheinlichkeiten :"Mädchen": ; "nicht Mädchen": ;
Ereignis | P |
---|---|
Mädchen -> Mädchen -> Mädchen | |
Mädchen -> Mädchen -> nicht Mädchen | |
Mädchen -> nicht Mädchen -> Mädchen | |
Mädchen -> nicht Mädchen -> nicht Mädchen | |
nicht Mädchen -> Mädchen -> Mädchen | |
nicht Mädchen -> Mädchen -> nicht Mädchen | |
nicht Mädchen -> nicht Mädchen -> Mädchen | |
nicht Mädchen -> nicht Mädchen -> nicht Mädchen |
Einzel-Wahrscheinlichkeiten: P("Mädchen")=; P("nicht Mädchen")=;
Die relevanten Pfade sind:
'Mädchen'-'Mädchen'-'nicht Mädchen' (P=)
'Mädchen'-'nicht Mädchen'-'Mädchen' (P=)
'nicht Mädchen'-'Mädchen'-'Mädchen' (P=)
'Mädchen'-'Mädchen'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =