nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 7 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 7

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 7 = 1 : 7 ≈ 0.143

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.143 = 14.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 19 Kugeln, die mit Zahlen 1 bis 19 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 2 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 19, die größer als 2 sind, suchern, finden wir:
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}, also insgesamt 17 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 2) = 17 19

Als Dezimalzahl ergibt das: P(größer als 2) = 17 19 = 17 : 19 ≈ 0.895

Als Prozentzahl ergibt das: P(größer als 2) ≈ 0.895 = 89.5%

Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl genau einen, genau zwei, genau drei oder genau vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Zahl'-'Wappen'-'Zahl' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 3 Schüler mit NWT-Profil, 9 Schüler mit sprachlichem Profil, 7 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 8 ; "nicht NWT": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 35 46 = 11 46

EreignisP
NWT -> NWT 1 92
NWT -> nicht NWT 21 184
nicht NWT -> NWT 21 184
nicht NWT -> nicht NWT 35 46

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 8 ; P("nicht NWT")= 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 21 184 )
'nicht NWT'-'NWT' (P= 21 184 )
'NWT'-'NWT' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 184 + 21 184 + 1 92 = 11 46


Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 140 = 1 140


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 92
13 -> 14 25 138
13 -> 15 5 69
14 -> 13 25 138
14 -> 14 15 92
14 -> 15 5 69
15 -> 13 5 69
15 -> 14 5 69
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: P("13")= 5 12 ; P("14")= 5 12 ; P("15")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'14'-'15' (P= 5 69 )
'15'-'14' (P= 5 69 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 69 + 5 69 = 10 69


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 5 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 9 5 8
= 1 9 5 2
= 5 18

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 342 1369 )
  • 'nicht rot'-'rot' (P= 342 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 = 684 1369