nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 12 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 12

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 12 = 1 : 12 ≈ 0.083

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.083 = 8.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 25 Kugeln, die mit Zahlen 1 bis 25 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 6 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 25, die größer als 6 sind, suchern, finden wir:
{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}, also insgesamt 19 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 6) = 19 25

Als Dezimalzahl ergibt das: P(größer als 6) = 19 25 = 19 : 25 ≈ 0.76

Als Prozentzahl ergibt das: P(größer als 6) ≈ 0.76 = 76%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 6 Asse, 5 Könige, 1 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 5 + 1 + 3=15

Hieraus ergibt sich für ...

Ass: p= 6 15 = 2 5

König: p= 5 15 = 1 3

Dame: p= 1 15

Bube: p= 3 15 = 1 5

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 4 ; "nicht gelb": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 1 16 = 15 16

EreignisP
gelb -> gelb 1 16
gelb -> nicht gelb 3 16
nicht gelb -> gelb 3 16
nicht gelb -> nicht gelb 9 16

Einzel-Wahrscheinlichkeiten: P("gelb")= 1 4 ; P("nicht gelb")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 3 16 )
  • 'nicht gelb'-'gelb' (P= 3 16 )
  • 'nicht gelb'-'nicht gelb' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 7 vom Typ rot, 10 vom Typ blau, 2 vom Typ gelb und 5 vom Typ schwarz. Es wird 2 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 49 576
rot -> blau 35 288
rot -> gelb 7 288
rot -> schwarz 35 576
blau -> rot 35 288
blau -> blau 25 144
blau -> gelb 5 144
blau -> schwarz 25 288
gelb -> rot 7 288
gelb -> blau 5 144
gelb -> gelb 1 144
gelb -> schwarz 5 288
schwarz -> rot 35 576
schwarz -> blau 25 288
schwarz -> gelb 5 288
schwarz -> schwarz 25 576

Einzel-Wahrscheinlichkeiten: P("rot")= 7 24 ; P("blau")= 5 12 ; P("gelb")= 1 12 ; P("schwarz")= 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 49 576 )
  • 'blau'-'blau' (P= 25 144 )
  • 'gelb'-'gelb' (P= 1 144 )
  • 'schwarz'-'schwarz' (P= 25 576 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

49 576 + 25 144 + 1 144 + 25 576 = 89 288


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'andere'-'andere'-'andere' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 28 = 11 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 10 vom Typ Herz, 7 vom Typ Pik und 4 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 12 145
Kreuz -> Herz 3 29
Kreuz -> Pik 21 290
Kreuz -> Karo 6 145
Herz -> Kreuz 3 29
Herz -> Herz 3 29
Herz -> Pik 7 87
Herz -> Karo 4 87
Pik -> Kreuz 21 290
Pik -> Herz 7 87
Pik -> Pik 7 145
Pik -> Karo 14 435
Karo -> Kreuz 6 145
Karo -> Herz 4 87
Karo -> Pik 14 435
Karo -> Karo 2 145

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 10 ; P("Herz")= 1 3 ; P("Pik")= 7 30 ; P("Karo")= 2 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 12 145 )
'Herz'-'Herz' (P= 3 29 )
'Pik'-'Pik' (P= 7 145 )
'Karo'-'Karo' (P= 2 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 145 + 3 29 + 7 145 + 2 145 = 36 145


nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 9 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?

Lösung einblenden
EreignisP
1 -> 1 3 38
1 -> 2 27 190
1 -> 3 3 38
2 -> 1 27 190
2 -> 2 18 95
2 -> 3 9 76
3 -> 1 3 38
3 -> 2 9 76
3 -> 3 1 19

Einzel-Wahrscheinlichkeiten: P("1")= 3 10 ; P("2")= 9 20 ; P("3")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 9 76 )
'3'-'2' (P= 9 76 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 76 + 9 76 = 9 38


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 12 10 11
= 2 6 5 11
= 5 33

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 324 1369 = 1045 1369

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 342 1369 )
  • 'nicht rot'-'rot' (P= 342 1369 )
  • 'nicht rot'-'nicht rot' (P= 361 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 361 1369 = 1045 1369