Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 5 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 5 ≈ 0.2
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.2 = 20%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 16 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 3 : 16 ≈ 0.188
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.188 = 18.8%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 7 blaue, 6 grüne, 1 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 6 + 1 + 6=20
Hieraus ergibt sich für ...
blau: p=
grün: p= =
gelb: p=
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'nicht prim' (P=)
- 'nicht prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal 1-12 und 1 mal 13-24"?
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> 13-24 | |
| 1-12 -> 25-36 | |
| 1-12 -> grüne 0 | |
| 13-24 -> 1-12 | |
| 13-24 -> 13-24 | |
| 13-24 -> 25-36 | |
| 13-24 -> grüne 0 | |
| 25-36 -> 1-12 | |
| 25-36 -> 13-24 | |
| 25-36 -> 25-36 | |
| 25-36 -> grüne 0 | |
| grüne 0 -> 1-12 | |
| grüne 0 -> 13-24 | |
| grüne 0 -> 25-36 | |
| grüne 0 -> grüne 0 |
Einzel-Wahrscheinlichkeiten: P("1-12")=; P("13-24")=; P("25-36")=; P("grüne 0")=;
Die relevanten Pfade sind:- '1-12'-'13-24' (P=)
- '13-24'-'1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: P("König")=; P("nicht König")=;
Die relevanten Pfade sind:
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 9 Karten der Farbe Kreuz, 3 der Farbe Pik, 6 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Herz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
Da ja ausschließlich nach 'Herz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Herz' und 'nicht Herz'
Einzel-Wahrscheinlichkeiten :"Herz": ; "nicht Herz": ;
| Ereignis | P |
|---|---|
| Herz -> Herz | |
| Herz -> nicht Herz | |
| nicht Herz -> Herz | |
| nicht Herz -> nicht Herz |
Einzel-Wahrscheinlichkeiten: P("Herz")=; P("nicht Herz")=;
Die relevanten Pfade sind:
'Herz'-'Herz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: P("13")=; P("14")=; P("15")=;
Die relevanten Pfade sind:
'13'-'15' (P=)
'15'-'13' (P=)
'14'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 4 rote und 8 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅
=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Zahl"?
| Ereignis | P |
|---|---|
| Zahl -> Zahl -> Zahl | |
| Zahl -> Zahl -> Wappen | |
| Zahl -> Wappen -> Zahl | |
| Zahl -> Wappen -> Wappen | |
| Wappen -> Zahl -> Zahl | |
| Wappen -> Zahl -> Wappen | |
| Wappen -> Wappen -> Zahl | |
| Wappen -> Wappen -> Wappen |
Einzel-Wahrscheinlichkeiten: P("Zahl")=; P("Wappen")=;
Die relevanten Pfade sind:- 'Zahl'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Zahl'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
