nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 9 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 9

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 9 = 1 : 9 ≈ 0.111

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.111 = 11.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 9 Kugeln, die mit Zahlen 1 bis 9 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Primzahlen zwischen 1 und 9 suchern, finden wir:
{2, 3, 5, 7}, also insgesamt 4 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(Primzahl) = 4 9

Als Dezimalzahl ergibt das: P(Primzahl) = 4 9 = 4 : 9 ≈ 0.444

Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.444 = 44.4%

Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: p= 5 8

grün: Man erkennt einen Viertelkreis => p= 1 4

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 4
rot -> blau 1 4
blau -> rot 1 4
blau -> blau 1 4

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 = 1 4


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er 2 27
3er-Zahl -> nicht 3er -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er -> nicht 3er 4 27
nicht 3er -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er -> 3er-Zahl -> nicht 3er 4 27
nicht 3er -> nicht 3er -> 3er-Zahl 4 27
nicht 3er -> nicht 3er -> nicht 3er 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht 3er'-'nicht 3er'-'nicht 3er' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 27 = 8 27


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 2 15
rot -> blau 4 15
blau -> rot 4 15
blau -> blau 1 3

Einzel-Wahrscheinlichkeiten: P("rot")= 2 5 ; P("blau")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 8 vom Typ Kreuz, 4 vom Typ Herz, 10 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 7 75
Kreuz -> Herz 4 75
Kreuz -> Pik 2 15
Kreuz -> Karo 1 25
Herz -> Kreuz 4 75
Herz -> Herz 1 50
Herz -> Pik 1 15
Herz -> Karo 1 50
Pik -> Kreuz 2 15
Pik -> Herz 1 15
Pik -> Pik 3 20
Pik -> Karo 1 20
Karo -> Kreuz 1 25
Karo -> Herz 1 50
Karo -> Pik 1 20
Karo -> Karo 1 100

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 8 25 ; P("Herz")= 4 25 ; P("Pik")= 2 5 ; P("Karo")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 7 75 )
'Herz'-'Herz' (P= 1 50 )
'Pik'-'Pik' (P= 3 20 )
'Karo'-'Karo' (P= 1 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 75 + 1 50 + 3 20 + 1 100 = 41 150


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?

Lösung einblenden
EreignisP
7 -> 7 1 45
7 -> 8 4 45
7 -> 9 4 45
8 -> 7 4 45
8 -> 8 2 15
8 -> 9 8 45
9 -> 7 4 45
9 -> 8 8 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: P("7")= 1 5 ; P("8")= 2 5 ; P("9")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'8' (P= 4 45 )
'8'-'7' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 9 Kugeln mit einer Eins beschriftet, 10 Kugeln mit einer Zwei, 10 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 4 ergeben?

Lösung einblenden
EreignisP
1 -> 1 9 124
1 -> 2 45 496
1 -> 3 45 496
1 -> 4 27 992
2 -> 1 45 496
2 -> 2 45 496
2 -> 3 25 248
2 -> 4 15 496
3 -> 1 45 496
3 -> 2 25 248
3 -> 3 45 496
3 -> 4 15 496
4 -> 1 27 992
4 -> 2 15 496
4 -> 3 15 496
4 -> 4 3 496

Einzel-Wahrscheinlichkeiten: P("1")= 9 32 ; P("2")= 5 16 ; P("3")= 5 16 ; P("4")= 3 32 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 45 496 )
'3'-'1' (P= 45 496 )
'2'-'2' (P= 45 496 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

45 496 + 45 496 + 45 496 = 135 496