nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 13 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 13

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 13 = 1 : 13 ≈ 0.077

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.077 = 7.7%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 20 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 9 20

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 9 20 = 9 : 20 ≈ 0.45

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.45 = 45%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 9 blaue, 7 grüne, 9 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 7 + 9 + 5=30

Hieraus ergibt sich für ...

blau: p= 9 30 = 3 10

grün: p= 7 30

gelb: p= 9 30 = 3 10

rot: p= 5 30 = 1 6

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 49 64
rot -> blau 7 64
blau -> rot 7 64
blau -> blau 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 7 8 ; P("blau")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 7 64 )
  • 'blau'-'rot' (P= 7 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 64 + 7 64 = 7 32


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal schwarz"?

Lösung einblenden
EreignisP
rot -> rot 324 1369
rot -> schwarz 324 1369
rot -> grün 18 1369
schwarz -> rot 324 1369
schwarz -> schwarz 324 1369
schwarz -> grün 18 1369
grün -> rot 18 1369
grün -> schwarz 18 1369
grün -> grün 1 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("schwarz")= 18 37 ; P("grün")= 1 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'schwarz' (P= 324 1369 )
  • 'schwarz'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 + 324 1369 = 648 1369


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 9 vom Typ Herz, 9 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 92
Kreuz -> Herz 9 184
Kreuz -> Pik 9 184
Kreuz -> Karo 3 184
Herz -> Kreuz 9 184
Herz -> Herz 3 23
Herz -> Pik 27 184
Herz -> Karo 9 184
Pik -> Kreuz 9 184
Pik -> Herz 27 184
Pik -> Pik 3 23
Pik -> Karo 9 184
Karo -> Kreuz 3 184
Karo -> Herz 9 184
Karo -> Pik 9 184
Karo -> Karo 1 92

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 8 ; P("Herz")= 3 8 ; P("Pik")= 3 8 ; P("Karo")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 92 )
'Herz'-'Herz' (P= 3 23 )
'Pik'-'Pik' (P= 3 23 )
'Karo'-'Karo' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 92 + 3 23 + 3 23 + 1 92 = 13 46


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 6 rote, 10 blaue , 8 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 5 ; "nicht rot": 4 5 ;

EreignisP
rot -> rot 1 29
rot -> nicht rot 24 145
nicht rot -> rot 24 145
nicht rot -> nicht rot 92 145

Einzel-Wahrscheinlichkeiten: P("rot")= 1 5 ; P("nicht rot")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 29 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 29 = 1 29


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?

Lösung einblenden
EreignisP
7 -> 7 1 15
7 -> 8 2 15
7 -> 9 2 15
8 -> 7 2 15
8 -> 8 1 15
8 -> 9 2 15
9 -> 7 2 15
9 -> 8 2 15
9 -> 9 1 15

Einzel-Wahrscheinlichkeiten: P("7")= 1 3 ; P("8")= 1 3 ; P("9")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'9' (P= 2 15 )
'9'-'7' (P= 2 15 )
'8'-'8' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 + 1 15 = 1 3


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 5 1 4 3 3
= 1 5 1 2 3 3
= 1 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(