Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 25 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 25 ≈ 0.04
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.04 = 4%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 20 Kugeln, die mit Zahlen 1 bis 20 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 4 teilbar ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle durch 4 teilbaren Zahlen zwischen 1 und 20 suchern, finden wir:
{4, 8, 12, 16, 20}, also insgesamt
5 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(teilbar durch 4) = =
Als Dezimalzahl ergibt das: P(teilbar durch 4) = = 1 : 4 ≈ 0.25
Als Prozentzahl ergibt das: P(teilbar durch 4) ≈ 0.25 = 25%
Zufallsexperiment (einstufig)
Beispiel:
Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl genau einen, genau zwei, genau drei oder genau vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6
Hieraus ergibt sich für ...
1: p=
2: p= =
3: p=
4: p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Zahl"?
| Ereignis | P |
|---|---|
| Zahl -> Zahl -> Zahl | |
| Zahl -> Zahl -> Wappen | |
| Zahl -> Wappen -> Zahl | |
| Zahl -> Wappen -> Wappen | |
| Wappen -> Zahl -> Zahl | |
| Wappen -> Zahl -> Wappen | |
| Wappen -> Wappen -> Zahl | |
| Wappen -> Wappen -> Wappen |
Einzel-Wahrscheinlichkeiten: P("Zahl")=; P("Wappen")=;
Die relevanten Pfade sind:- 'Zahl'-'Zahl'-'Wappen' (P=)
- 'Zahl'-'Wappen'-'Zahl' (P=)
- 'Wappen'-'Zahl'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 3 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er -> 6er | |
| 6er -> 6er -> nicht 6er | |
| 6er -> nicht 6er -> 6er | |
| 6er -> nicht 6er -> nicht 6er | |
| nicht 6er -> 6er -> 6er | |
| nicht 6er -> 6er -> nicht 6er | |
| nicht 6er -> nicht 6er -> 6er | |
| nicht 6er -> nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("nicht 6er")=;
Die relevanten Pfade sind:- '6er'-'6er'-'nicht 6er' (P=)
- '6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'6er'-'6er' (P=)
- '6er'-'nicht 6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er'-'nicht 6er' (P=)
- 'nicht 6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 4 Asse, 4 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> nicht Ass | |
| nicht Ass -> Ass | |
| nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("nicht Ass")=;
Die relevanten Pfade sind:
'Ass'-'nicht Ass' (P=)
'nicht Ass'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal deutsch' alle Möglichkeiten enthalten, außer eben 3 mal 'deutsch'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'deutsch')=1- =
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> nicht deutsch | |
| deutsch -> nicht deutsch -> deutsch | |
| deutsch -> nicht deutsch -> nicht deutsch | |
| nicht deutsch -> deutsch -> deutsch | |
| nicht deutsch -> deutsch -> nicht deutsch | |
| nicht deutsch -> nicht deutsch -> deutsch | |
| nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: P("deutsch")=; P("nicht deutsch")=;
Die relevanten Pfade sind:
'deutsch'-'deutsch'-'nicht deutsch' (P=)
'deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'deutsch'-'deutsch' (P=)
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 9 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 2 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot -> rot | |
| rot -> rot -> blau | |
| rot -> blau -> rot | |
| rot -> blau -> blau | |
| blau -> rot -> rot | |
| blau -> rot -> blau | |
| blau -> blau -> rot | |
| blau -> blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:
'rot'-'blau'-'blau' (P=)
'blau'-'rot'-'blau' (P=)
'blau'-'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
