nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 9 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 9

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 9 = 1 : 9 ≈ 0.111

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.111 = 11.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 10 Kugeln, die mit Zahlen 1 bis 10 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 2 teilbar ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle durch 2 teilbaren Zahlen zwischen 1 und 10 suchern, finden wir:
{2, 4, 6, 8, 10}, also insgesamt 5 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(teilbar durch 2) = 5 10 = 1 2

Als Dezimalzahl ergibt das: P(teilbar durch 2) = 1 2 = 1 : 2 ≈ 0.5

Als Prozentzahl ergibt das: P(teilbar durch 2) ≈ 0.5 = 50%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 4 Asse, 8 Könige, 9 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 8 + 9 + 3=24

Hieraus ergibt sich für ...

Ass: p= 4 24 = 1 6

König: p= 8 24 = 1 3

Dame: p= 9 24 = 3 8

Bube: p= 3 24 = 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 36 = 25 36


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er'-'keine_6' (P= 5 216 )
  • '6er'-'keine_6'-'6er' (P= 5 216 )
  • 'keine_6'-'6er'-'6er' (P= 5 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 216 + 5 216 + 5 216 = 5 72


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote, 2 blaue , 9 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 3 38
rot -> blau 3 95
rot -> gelb 27 190
rot -> schwarz 9 190
blau -> rot 3 95
blau -> blau 1 190
blau -> gelb 9 190
blau -> schwarz 3 190
gelb -> rot 27 190
gelb -> blau 9 190
gelb -> gelb 18 95
gelb -> schwarz 27 380
schwarz -> rot 9 190
schwarz -> blau 3 190
schwarz -> gelb 27 380
schwarz -> schwarz 3 190

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("blau")= 1 10 ; P("gelb")= 9 20 ; P("schwarz")= 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'gelb' (P= 27 190 )
'gelb'-'rot' (P= 27 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 190 + 27 190 = 27 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Karten der Farbe Kreuz, 10 der Farbe Pik, 4 der Farbe Herz und 4 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Herz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden

Da ja ausschließlich nach 'Herz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Herz' und 'nicht Herz'

Einzel-Wahrscheinlichkeiten :"Herz": 1 5 ; "nicht Herz": 4 5 ;

EreignisP
Herz -> Herz 3 95
Herz -> nicht Herz 16 95
nicht Herz -> Herz 16 95
nicht Herz -> nicht Herz 12 19

Einzel-Wahrscheinlichkeiten: P("Herz")= 1 5 ; P("nicht Herz")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Herz'-'nicht Herz' (P= 16 95 )
'nicht Herz'-'Herz' (P= 16 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 95 + 16 95 = 32 95


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 2 5 ; "nicht 7": 3 5 ;

EreignisP
7 -> 7 2 15
7 -> nicht 7 4 15
nicht 7 -> 7 4 15
nicht 7 -> nicht 7 1 3

Einzel-Wahrscheinlichkeiten: P("7")= 2 5 ; P("nicht 7")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 36 = 25 36