Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 32 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 32 ≈ 0.031
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.031 = 3.1%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 23 Kugeln, die mit Zahlen 1 bis 23 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Primzahlen zwischen 1 und 23 suchern, finden wir:
{2, 3, 5, 7, 11, 13, 17, 19, 23}, also insgesamt
9 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(Primzahl) =
Als Dezimalzahl ergibt das: P(Primzahl) = = 9 : 23 ≈ 0.391
Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.391 = 39.1%
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Viertelkreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote, 8 gelbe, 10 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'nicht blau' (P=)
- 'nicht blau'-'blau' (P=)
- 'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=;
Die relevanten Pfade sind:- '3'-'4' (P=)
- '4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 3 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'NWT')=1- =
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'NWT'-'nicht NWT' (P=)
'nicht NWT'-'NWT' (P=)
'nicht NWT'-'nicht NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("8")=; P("9")=;
Die relevanten Pfade sind:
'7'-'8' (P=)
'8'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: P("13")=; P("14")=; P("15")=;
Die relevanten Pfade sind:
'13'-'14' (P=)
'14'-'13' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal 1-12 und 1 mal 13-24"?
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> 13-24 | |
| 1-12 -> 25-36 | |
| 1-12 -> grüne 0 | |
| 13-24 -> 1-12 | |
| 13-24 -> 13-24 | |
| 13-24 -> 25-36 | |
| 13-24 -> grüne 0 | |
| 25-36 -> 1-12 | |
| 25-36 -> 13-24 | |
| 25-36 -> 25-36 | |
| 25-36 -> grüne 0 | |
| grüne 0 -> 1-12 | |
| grüne 0 -> 13-24 | |
| grüne 0 -> 25-36 | |
| grüne 0 -> grüne 0 |
Einzel-Wahrscheinlichkeiten: P("1-12")=; P("13-24")=; P("25-36")=; P("grüne 0")=;
Die relevanten Pfade sind:- '1-12'-'13-24' (P=)
- '13-24'-'1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
