Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 4 rote, 8 gelbe, 7 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
Ereignis | P |
---|---|
blau -> blau | |
blau -> nicht blau | |
nicht blau -> blau | |
nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'nicht blau' (P=)
'nicht blau'-'blau' (P=)
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Ereignis | P |
---|---|
Teiler -> Teiler -> Teiler | |
Teiler -> Teiler -> kein Teiler | |
Teiler -> kein Teiler -> Teiler | |
Teiler -> kein Teiler -> kein Teiler | |
kein Teiler -> Teiler -> Teiler | |
kein Teiler -> Teiler -> kein Teiler | |
kein Teiler -> kein Teiler -> Teiler | |
kein Teiler -> kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; kein Teiler: ;
Die relevanten Pfade sind:
'kein Teiler'-'kein Teiler'-'kein Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 5 vom Typ Herz, 3 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> Herz | |
Kreuz -> Pik | |
Kreuz -> Karo | |
Herz -> Kreuz | |
Herz -> Herz | |
Herz -> Pik | |
Herz -> Karo | |
Pik -> Kreuz | |
Pik -> Herz | |
Pik -> Pik | |
Pik -> Karo | |
Karo -> Kreuz | |
Karo -> Herz | |
Karo -> Pik | |
Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 3 Karten der Farbe Kreuz, 9 der Farbe Pik, 10 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Pik und 1 mal Karo"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> Pik | |
Kreuz -> Herz | |
Kreuz -> Karo | |
Pik -> Kreuz | |
Pik -> Pik | |
Pik -> Herz | |
Pik -> Karo | |
Herz -> Kreuz | |
Herz -> Pik | |
Herz -> Herz | |
Herz -> Karo | |
Karo -> Kreuz | |
Karo -> Pik | |
Karo -> Herz | |
Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Pik: ; Herz: ; Karo: ;
Die relevanten Pfade sind:
'Pik'-'Karo' (P=)
'Karo'-'Pik' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 9 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:
'2'-'3' (P=)
'3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 2 rote und 1 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 4 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=