nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 5 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 5

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 5 = 1 : 5 ≈ 0.2

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.2 = 20%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 16 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 3 16

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 3 16 = 3 : 16 ≈ 0.188

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.188 = 18.8%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 7 blaue, 6 grüne, 1 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 6 + 1 + 6=20

Hieraus ergibt sich für ...

blau: p= 7 20

grün: p= 6 20 = 3 10

gelb: p= 1 20

rot: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim' (P= 1 4 )
  • 'nicht prim'-'prim' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 = 1 2


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal 1-12 und 1 mal 13-24"?

Lösung einblenden
EreignisP
1-12 -> 1-12 144 1369
1-12 -> 13-24 144 1369
1-12 -> 25-36 144 1369
1-12 -> grüne 0 12 1369
13-24 -> 1-12 144 1369
13-24 -> 13-24 144 1369
13-24 -> 25-36 144 1369
13-24 -> grüne 0 12 1369
25-36 -> 1-12 144 1369
25-36 -> 13-24 144 1369
25-36 -> 25-36 144 1369
25-36 -> grüne 0 12 1369
grüne 0 -> 1-12 12 1369
grüne 0 -> 13-24 12 1369
grüne 0 -> 25-36 12 1369
grüne 0 -> grüne 0 1 1369

Einzel-Wahrscheinlichkeiten: P("1-12")= 12 37 ; P("13-24")= 12 37 ; P("25-36")= 12 37 ; P("grüne 0")= 1 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1-12'-'13-24' (P= 144 1369 )
  • '13-24'-'1-12' (P= 144 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

144 1369 + 144 1369 = 288 1369


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 1 4 ; "nicht König": 3 4 ;

EreignisP
König -> König 1 28
König -> nicht König 3 14
nicht König -> König 3 14
nicht König -> nicht König 15 28

Einzel-Wahrscheinlichkeiten: P("König")= 1 4 ; P("nicht König")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'König' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 9 Karten der Farbe Kreuz, 3 der Farbe Pik, 6 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Herz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden

Da ja ausschließlich nach 'Herz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Herz' und 'nicht Herz'

Einzel-Wahrscheinlichkeiten :"Herz": 1 4 ; "nicht Herz": 3 4 ;

EreignisP
Herz -> Herz 5 92
Herz -> nicht Herz 9 46
nicht Herz -> Herz 9 46
nicht Herz -> nicht Herz 51 92

Einzel-Wahrscheinlichkeiten: P("Herz")= 1 4 ; P("nicht Herz")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Herz'-'Herz' (P= 5 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 92 = 5 92


nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 35 92
13 -> 14 25 184
13 -> 15 5 46
14 -> 13 25 184
14 -> 14 5 138
14 -> 15 5 138
15 -> 13 5 46
15 -> 14 5 138
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: P("13")= 5 8 ; P("14")= 5 24 ; P("15")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'15' (P= 5 46 )
'15'-'13' (P= 5 46 )
'14'-'14' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 46 + 5 46 + 5 138 = 35 138


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 8 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 12 3 11 2 10 1 9 8 8
= 1 1 11 1 5 1 9 4 4
= 1 495

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Zahl"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8