nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 9 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 9

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 9 = 1 : 9 ≈ 0.111

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.111 = 11.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 2 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 2 4 = 1 2

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 2 = 1 : 2 ≈ 0.5

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.5 = 50%

Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'keine_6' (P= 5 36 )
  • 'keine_6'-'6er' (P= 5 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 = 5 18


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 7 10 ; "nicht rot": 3 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 27 1000 = 973 1000

EreignisP
rot -> rot -> rot 343 1000
rot -> rot -> nicht rot 147 1000
rot -> nicht rot -> rot 147 1000
rot -> nicht rot -> nicht rot 63 1000
nicht rot -> rot -> rot 147 1000
nicht rot -> rot -> nicht rot 63 1000
nicht rot -> nicht rot -> rot 63 1000
nicht rot -> nicht rot -> nicht rot 27 1000

Einzel-Wahrscheinlichkeiten: P("rot")= 7 10 ; P("nicht rot")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot'-'nicht rot' (P= 63 1000 )
  • 'nicht rot'-'rot'-'nicht rot' (P= 63 1000 )
  • 'nicht rot'-'nicht rot'-'rot' (P= 63 1000 )
  • 'rot'-'rot'-'nicht rot' (P= 147 1000 )
  • 'rot'-'nicht rot'-'rot' (P= 147 1000 )
  • 'nicht rot'-'rot'-'rot' (P= 147 1000 )
  • 'rot'-'rot'-'rot' (P= 343 1000 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

63 1000 + 63 1000 + 63 1000 + 147 1000 + 147 1000 + 147 1000 + 343 1000 = 973 1000


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 3 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 10 ; "nicht Mädchen": 7 10 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 120
Mädchen -> Mädchen -> nicht Mädchen 7 120
Mädchen -> nicht Mädchen -> Mädchen 7 120
Mädchen -> nicht Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> Mädchen -> Mädchen 7 120
nicht Mädchen -> Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 7 24

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 3 10 ; P("nicht Mädchen")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 120 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 120 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 7 120 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 120 + 7 120 + 7 120 + 1 120 = 11 60


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 4 45
7 -> 9 8 45
8 -> 7 4 45
8 -> 8 1 45
8 -> 9 4 45
9 -> 7 8 45
9 -> 8 4 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: P("7")= 2 5 ; P("8")= 1 5 ; P("9")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 4 45 )
'9'-'8' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 1 45
7 -> 8 4 45
7 -> 9 4 45
8 -> 7 4 45
8 -> 8 2 15
8 -> 9 8 45
9 -> 7 4 45
9 -> 8 8 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: P("7")= 1 5 ; P("8")= 2 5 ; P("9")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 8 45 )
'9'-'8' (P= 8 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 = 16 45


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 5 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 7 5 6
= 1 7 5 3
= 5 21

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 4 rote, 7 blaue , 2 gelbe und 7 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 10 ; "nicht gelb": 9 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 1 190 = 189 190

EreignisP
gelb -> gelb 1 190
gelb -> nicht gelb 9 95
nicht gelb -> gelb 9 95
nicht gelb -> nicht gelb 153 190

Einzel-Wahrscheinlichkeiten: P("gelb")= 1 10 ; P("nicht gelb")= 9 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'nicht gelb' (P= 9 95 )
'nicht gelb'-'gelb' (P= 9 95 )
'nicht gelb'-'nicht gelb' (P= 153 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 95 + 9 95 + 153 190 = 189 190