nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 7 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 7

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 7 = 1 : 7 ≈ 0.143

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.143 = 14.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 11 Kugeln, die mit Zahlen 1 bis 11 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 2 teilbar ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle durch 2 teilbaren Zahlen zwischen 1 und 11 suchern, finden wir:
{2, 4, 6, 8, 10}, also insgesamt 5 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(teilbar durch 2) = 5 11

Als Dezimalzahl ergibt das: P(teilbar durch 2) = 5 11 = 5 : 11 ≈ 0.455

Als Prozentzahl ergibt das: P(teilbar durch 2) ≈ 0.455 = 45.5%

Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl genau einen, genau zwei, genau drei oder genau vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 8 ; "nicht rot": 5 8 ;

EreignisP
rot -> rot 9 64
rot -> nicht rot 15 64
nicht rot -> rot 15 64
nicht rot -> nicht rot 25 64

Einzel-Wahrscheinlichkeiten: P("rot")= 3 8 ; P("nicht rot")= 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 9 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 64 = 9 64


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 10 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '4'-'6' (P= 1 36 )
  • '6'-'4' (P= 1 36 )
  • '5'-'5' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 = 1 12


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal Dame"?

Lösung einblenden
EreignisP
Ass -> Ass 2 15
Ass -> König 4 45
Ass -> Dame 8 45
König -> Ass 4 45
König -> König 1 45
König -> Dame 4 45
Dame -> Ass 8 45
Dame -> König 4 45
Dame -> Dame 2 15

Einzel-Wahrscheinlichkeiten: P("Ass")= 2 5 ; P("König")= 1 5 ; P("Dame")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Dame' (P= 8 45 )
'Dame'-'Ass' (P= 8 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 = 16 45


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 22
1 -> 2 3 22
1 -> 3 3 44
2 -> 1 3 22
2 -> 2 5 22
2 -> 3 3 22
3 -> 1 3 44
3 -> 2 3 22
3 -> 3 1 22

Einzel-Wahrscheinlichkeiten: P("1")= 1 4 ; P("2")= 1 2 ; P("3")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 22 )
'2'-'1' (P= 3 22 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 22 + 3 22 = 3 11


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?

Lösung einblenden
EreignisP
7 -> 7 1 11
7 -> 8 4 33
7 -> 9 4 33
8 -> 7 4 33
8 -> 8 1 11
8 -> 9 4 33
9 -> 7 4 33
9 -> 8 4 33
9 -> 9 1 11

Einzel-Wahrscheinlichkeiten: P("7")= 1 3 ; P("8")= 1 3 ; P("9")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'9' (P= 4 33 )
'9'-'7' (P= 4 33 )
'8'-'8' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 33 + 4 33 + 1 11 = 1 3


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 18 19
= 3 7 2 10 3 19
= 9 665

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 81 400
1 -> 2 63 400
1 -> 3 9 100
2 -> 1 63 400
2 -> 2 49 400
2 -> 3 7 100
3 -> 1 9 100
3 -> 2 7 100
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: P("1")= 9 20 ; P("2")= 7 20 ; P("3")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 7 100 )
  • '3'-'2' (P= 7 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 100 + 7 100 = 7 50