Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 6 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 6 ≈ 0.167
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.167 = 16.7%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 25 Kugeln, die mit Zahlen 1 bis 25 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 12 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 25, die kleiner als 12 sind, suchern, finden wir eben die Zahlen von 1 bis
11,
also insgesamt 11 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 12) =
Als Dezimalzahl ergibt das: P(kleiner als 12) = = 11 : 25 ≈ 0.44
Als Prozentzahl ergibt das: P(kleiner als 12) ≈ 0.44 = 44%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 7 blaue, 1 grüne, 8 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 1 + 8 + 4=20
Hieraus ergibt sich für ...
blau: p=
grün: p=
gelb: p= =
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Primzahl zu würfeln?
Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'
Einzel-Wahrscheinlichkeiten :"prim": ; "nicht prim": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal prim' alle Möglichkeiten enthalten, außer eben kein 'prim' bzw. 0 mal 'prim'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'prim')=1- =
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'nicht prim' (P=)
- 'nicht prim'-'prim' (P=)
- 'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal 1-12 und 1 mal 13-24"?
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> 13-24 | |
| 1-12 -> 25-36 | |
| 1-12 -> grüne 0 | |
| 13-24 -> 1-12 | |
| 13-24 -> 13-24 | |
| 13-24 -> 25-36 | |
| 13-24 -> grüne 0 | |
| 25-36 -> 1-12 | |
| 25-36 -> 13-24 | |
| 25-36 -> 25-36 | |
| 25-36 -> grüne 0 | |
| grüne 0 -> 1-12 | |
| grüne 0 -> 13-24 | |
| grüne 0 -> 25-36 | |
| grüne 0 -> grüne 0 |
Einzel-Wahrscheinlichkeiten: P("1-12")=; P("13-24")=; P("25-36")=; P("grüne 0")=;
Die relevanten Pfade sind:- '1-12'-'13-24' (P=)
- '13-24'-'1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Ass' alle Möglichkeiten enthalten, außer eben kein 'Ass' bzw. 0 mal 'Ass'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Ass')=1- =
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> nicht Ass | |
| nicht Ass -> Ass | |
| nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("nicht Ass")=;
Die relevanten Pfade sind:
'Ass'-'nicht Ass' (P=)
'nicht Ass'-'Ass' (P=)
'Ass'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> nicht blau | |
| blau -> nicht blau -> blau | |
| blau -> nicht blau -> nicht blau | |
| nicht blau -> blau -> blau | |
| nicht blau -> blau -> nicht blau | |
| nicht blau -> nicht blau -> blau | |
| nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:
'blau'-'blau'-'nicht blau' (P=)
'blau'-'nicht blau'-'blau' (P=)
'nicht blau'-'blau'-'blau' (P=)
'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
nur Summen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 4 2er und 7 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("8")=; P("9")=;
Die relevanten Pfade sind:
'7'-'9' (P=)
'9'-'7' (P=)
'8'-'8' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
