Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 10 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 10 ≈ 0.1
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.1 = 10%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 18 Kugeln, die mit Zahlen 1 bis 18 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 11 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 18, die kleiner als 11 sind, suchern, finden wir eben die Zahlen von 1 bis
10,
also insgesamt 10 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 11) = =
Als Dezimalzahl ergibt das: P(kleiner als 11) = = 5 : 9 ≈ 0.556
Als Prozentzahl ergibt das: P(kleiner als 11) ≈ 0.556 = 55.6%
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Viertelkreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Wappen' alle Möglichkeiten enthalten, außer eben kein 'Wappen' bzw. 0 mal 'Wappen'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Wappen')=1- =
Ereignis | P |
---|---|
Wappen -> Wappen -> Wappen | |
Wappen -> Wappen -> nicht Wappen | |
Wappen -> nicht Wappen -> Wappen | |
Wappen -> nicht Wappen -> nicht Wappen | |
nicht Wappen -> Wappen -> Wappen | |
nicht Wappen -> Wappen -> nicht Wappen | |
nicht Wappen -> nicht Wappen -> Wappen | |
nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: P("Wappen")=; P("nicht Wappen")=;
Die relevanten Pfade sind:- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'
Einzel-Wahrscheinlichkeiten :"A": ; "nicht A": ;
Ereignis | P |
---|---|
A -> A | |
A -> nicht A | |
nicht A -> A | |
nicht A -> nicht A |
Einzel-Wahrscheinlichkeiten: P("A")=; P("nicht A")=;
Die relevanten Pfade sind:- 'A'-'A' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Ereignis | P |
---|---|
deutsch -> deutsch -> deutsch | |
deutsch -> deutsch -> andere | |
deutsch -> andere -> deutsch | |
deutsch -> andere -> andere | |
andere -> deutsch -> deutsch | |
andere -> deutsch -> andere | |
andere -> andere -> deutsch | |
andere -> andere -> andere |
Einzel-Wahrscheinlichkeiten: P("deutsch")=; P("andere")=;
Die relevanten Pfade sind:
'andere'-'andere'-'andere' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?
Ereignis | P |
---|---|
7 -> 7 | |
7 -> 8 | |
7 -> 9 | |
8 -> 7 | |
8 -> 8 | |
8 -> 9 | |
9 -> 7 | |
9 -> 8 | |
9 -> 9 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("8")=; P("9")=;
Die relevanten Pfade sind:
'7'-'9' (P=)
'9'-'7' (P=)
'8'-'8' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
nur Summen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?
Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'
Einzel-Wahrscheinlichkeiten :"9": ; "nicht 9": ;
Ereignis | P |
---|---|
9 -> 9 | |
9 -> nicht 9 | |
nicht 9 -> 9 | |
nicht 9 -> nicht 9 |
Einzel-Wahrscheinlichkeiten: P("9")=; P("nicht 9")=;
Die relevanten Pfade sind:
'9'-'9' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?
Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'
Einzel-Wahrscheinlichkeiten :"7": ; "nicht 7": ;
Ereignis | P |
---|---|
7 -> 7 | |
7 -> nicht 7 | |
nicht 7 -> 7 | |
nicht 7 -> nicht 7 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("nicht 7")=;
Die relevanten Pfade sind:
'7'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=