nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 3 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 3

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 3 = 1 : 3 ≈ 0.333

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.333 = 33.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 25 Kugeln, die mit Zahlen 1 bis 25 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 22 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 25, die kleiner als 22 sind, suchern, finden wir eben die Zahlen von 1 bis 21,
also insgesamt 21 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(kleiner als 22) = 21 25

Als Dezimalzahl ergibt das: P(kleiner als 22) = 21 25 = 21 : 25 ≈ 0.84

Als Prozentzahl ergibt das: P(kleiner als 22) ≈ 0.84 = 84%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 7 blaue, 2 grüne, 7 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 2 + 7 + 4=20

Hieraus ergibt sich für ...

blau: p= 7 20

grün: p= 2 20 = 1 10

gelb: p= 7 20

rot: p= 4 20 = 1 5

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 4 ; "nicht rot": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 1 16 = 15 16

EreignisP
rot -> rot 1 16
rot -> nicht rot 3 16
nicht rot -> rot 3 16
nicht rot -> nicht rot 9 16

Einzel-Wahrscheinlichkeiten: P("rot")= 1 4 ; P("nicht rot")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 3 16 )
  • 'nicht rot'-'rot' (P= 3 16 )
  • 'nicht rot'-'nicht rot' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 1 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 1 27 = 7 27


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 6 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 2 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 6
Mädchen -> Mädchen -> Jungs 1 6
Mädchen -> Jungs -> Mädchen 1 6
Mädchen -> Jungs -> Jungs 1 10
Jungs -> Mädchen -> Mädchen 1 6
Jungs -> Mädchen -> Jungs 1 10
Jungs -> Jungs -> Mädchen 1 10
Jungs -> Jungs -> Jungs 1 30

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 3 5 ; P("Jungs")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Jungs' (P= 1 6 )
'Mädchen'-'Jungs'-'Mädchen' (P= 1 6 )
'Jungs'-'Mädchen'-'Mädchen' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 6 = 1 2


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal König"?

Lösung einblenden
EreignisP
Ass -> Ass 2 15
Ass -> König 8 45
Ass -> Dame 4 45
König -> Ass 8 45
König -> König 2 15
König -> Dame 4 45
Dame -> Ass 4 45
Dame -> König 4 45
Dame -> Dame 1 45

Einzel-Wahrscheinlichkeiten: P("Ass")= 2 5 ; P("König")= 2 5 ; P("Dame")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'König' (P= 8 45 )
'König'-'Ass' (P= 8 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 = 16 45


nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 9 25
1 -> 2 3 25
1 -> 3 3 25
2 -> 1 3 25
2 -> 2 1 25
2 -> 3 1 25
3 -> 1 3 25
3 -> 2 1 25
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: P("1")= 3 5 ; P("2")= 1 5 ; P("3")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 25 )
  • '3'-'1' (P= 3 25 )
  • '2'-'2' (P= 1 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 + 1 25 = 7 25


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 10 8 9
= 2 5 4 9
= 8 45

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 8 vom Typ rot, 2 vom Typ blau, 10 vom Typ gelb und 4 vom Typ schwarz. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 7 69
rot -> blau 2 69
rot -> gelb 10 69
rot -> schwarz 4 69
blau -> rot 2 69
blau -> blau 1 276
blau -> gelb 5 138
blau -> schwarz 1 69
gelb -> rot 10 69
gelb -> blau 5 138
gelb -> gelb 15 92
gelb -> schwarz 5 69
schwarz -> rot 4 69
schwarz -> blau 1 69
schwarz -> gelb 5 69
schwarz -> schwarz 1 46

Einzel-Wahrscheinlichkeiten: P("rot")= 1 3 ; P("blau")= 1 12 ; P("gelb")= 5 12 ; P("schwarz")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 7 69 )
'blau'-'blau' (P= 1 276 )
'gelb'-'gelb' (P= 15 92 )
'schwarz'-'schwarz' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 69 + 1 276 + 15 92 + 1 46 = 20 69