Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 13 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 13 ≈ 0.077
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.077 = 7.7%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 20 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 9 : 20 ≈ 0.45
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.45 = 45%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 9 blaue, 7 grüne, 9 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 7 + 9 + 5=30
Hieraus ergibt sich für ...
blau: p= =
grün: p=
gelb: p= =
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:- 'rot'-'blau' (P=)
- 'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal schwarz"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> schwarz | |
| rot -> grün | |
| schwarz -> rot | |
| schwarz -> schwarz | |
| schwarz -> grün | |
| grün -> rot | |
| grün -> schwarz | |
| grün -> grün |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("schwarz")=; P("grün")=;
Die relevanten Pfade sind:- 'rot'-'schwarz' (P=)
- 'schwarz'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 9 vom Typ Herz, 9 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 6 rote, 10 blaue , 8 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: P("7")=; P("8")=; P("9")=;
Die relevanten Pfade sind:
'7'-'9' (P=)
'9'-'7' (P=)
'8'-'8' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
