Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
In einem Kartenstapel sind 21 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Hieraus ergibt sich somit: P(Herz-Ass) =
Als Dezimalzahl ergibt das: P(Herz-Ass) = = 1 : 21 ≈ 0.048
Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.048 = 4.8%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 6 Kugeln, die mit Zahlen 1 bis 6 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 4 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 6, die kleiner als 4 sind, suchern, finden wir eben die Zahlen von 1 bis
3,
also insgesamt 3 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 4) = =
Als Dezimalzahl ergibt das: P(kleiner als 4) = = 1 : 2 ≈ 0.5
Als Prozentzahl ergibt das: P(kleiner als 4) ≈ 0.5 = 50%
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 3 blaue, 2 grüne, 9 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 2 + 9 + 6=20
Hieraus ergibt sich für ...
blau: p=
grün: p= =
gelb: p=
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine Primzahl zu würfeln?
Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'
Einzel-Wahrscheinlichkeiten :"prim": ; "nicht prim": ;
| Ereignis | P |
|---|---|
| prim -> prim -> prim | |
| prim -> prim -> nicht prim | |
| prim -> nicht prim -> prim | |
| prim -> nicht prim -> nicht prim | |
| nicht prim -> prim -> prim | |
| nicht prim -> prim -> nicht prim | |
| nicht prim -> nicht prim -> prim | |
| nicht prim -> nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'prim'-'nicht prim' (P=)
- 'prim'-'nicht prim'-'prim' (P=)
- 'nicht prim'-'prim'-'prim' (P=)
- 'prim'-'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 2 rote, 7 gelbe, 7 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:- 'rot'-'nicht rot' (P=)
- 'nicht rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 5 rote und 5 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> nicht blau | |
| blau -> nicht blau -> blau | |
| blau -> nicht blau -> nicht blau | |
| nicht blau -> blau -> blau | |
| nicht blau -> blau -> nicht blau | |
| nicht blau -> nicht blau -> blau | |
| nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:
'blau'-'nicht blau'-'nicht blau' (P=)
'nicht blau'-'blau'-'nicht blau' (P=)
'nicht blau'-'nicht blau'-'blau' (P=)
'blau'-'blau'-'nicht blau' (P=)
'blau'-'nicht blau'-'blau' (P=)
'nicht blau'-'blau'-'blau' (P=)
'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
nur Summen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim -> prim | |
| prim -> prim -> nicht prim | |
| prim -> nicht prim -> prim | |
| prim -> nicht prim -> nicht prim | |
| nicht prim -> prim -> prim | |
| nicht prim -> prim -> nicht prim | |
| nicht prim -> nicht prim -> prim | |
| nicht prim -> nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'nicht prim'-'nicht prim' (P=)
- 'nicht prim'-'prim'-'nicht prim' (P=)
- 'nicht prim'-'nicht prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
