nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 10 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 10

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 10 = 1 : 10 ≈ 0.1

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.1 = 10%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 19 Kugeln, die mit Zahlen 1 bis 19 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 5 teilbar ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle durch 5 teilbaren Zahlen zwischen 1 und 19 suchern, finden wir:
{5, 10, 15}, also insgesamt 3 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(teilbar durch 5) = 3 19

Als Dezimalzahl ergibt das: P(teilbar durch 5) = 3 19 = 3 : 19 ≈ 0.158

Als Prozentzahl ergibt das: P(teilbar durch 5) ≈ 0.158 = 15.8%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 6 Asse, 1 Könige, 2 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 1 + 2 + 3=12

Hieraus ergibt sich für ...

Ass: p= 6 12 = 1 2

König: p= 1 12

Dame: p= 2 12 = 1 6

Bube: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 8 27 = 20 27


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 2 5 ; "nicht blau": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 1 3 = 2 3

EreignisP
blau -> blau 2 15
blau -> nicht blau 4 15
nicht blau -> blau 4 15
nicht blau -> nicht blau 1 3

Einzel-Wahrscheinlichkeiten: P("blau")= 2 5 ; P("nicht blau")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'nicht blau' (P= 4 15 )
'nicht blau'-'blau' (P= 4 15 )
'blau'-'blau' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 2 15 = 2 3


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 8 Kugeln mit einer Eins beschriftet, 6 Kugeln mit einer Zwei, 8 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 7 75
1 -> 2 2 25
1 -> 3 8 75
1 -> 4 1 25
2 -> 1 2 25
2 -> 2 1 20
2 -> 3 2 25
2 -> 4 3 100
3 -> 1 8 75
3 -> 2 2 25
3 -> 3 7 75
3 -> 4 1 25
4 -> 1 1 25
4 -> 2 3 100
4 -> 3 1 25
4 -> 4 1 100

Einzel-Wahrscheinlichkeiten: P("1")= 8 25 ; P("2")= 6 25 ; P("3")= 8 25 ; P("4")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 1 25 )
'4'-'3' (P= 1 25 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 25 + 1 25 = 2 25


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 10 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '4'-'6' (P= 1 36 )
  • '6'-'4' (P= 1 36 )
  • '5'-'5' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 = 1 12


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 4 1 3 2 2
= 1 2 1 3 1
= 1 6

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 5 ; "nicht Ass": 4 5 ;

EreignisP
Ass -> Ass 1 45
Ass -> nicht Ass 8 45
nicht Ass -> Ass 8 45
nicht Ass -> nicht Ass 28 45

Einzel-Wahrscheinlichkeiten: P("Ass")= 1 5 ; P("nicht Ass")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Ass' (P= 1 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 45 = 1 45