nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 24 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 24

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 24 = 1 : 24 ≈ 0.042

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.042 = 4.2%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 14 Kugeln, die mit Zahlen 1 bis 14 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 2 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 14, die größer als 2 sind, suchern, finden wir:
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, also insgesamt 12 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 2) = 12 14 = 6 7

Als Dezimalzahl ergibt das: P(größer als 2) = 6 7 = 6 : 7 ≈ 0.857

Als Prozentzahl ergibt das: P(größer als 2) ≈ 0.857 = 85.7%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 2 grüne, 3 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 2 + 3 + 4=12

Hieraus ergibt sich für ...

blau: p= 3 12 = 1 4

grün: p= 2 12 = 1 6

gelb: p= 3 12 = 1 4

rot: p= 4 12 = 1 3

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 = 1 36


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "1 mal A und 1 mal B"?

Lösung einblenden
EreignisP
A -> A 9 64
A -> B 3 32
A -> C 3 32
A -> D 3 64
B -> A 3 32
B -> B 1 16
B -> C 1 16
B -> D 1 32
C -> A 3 32
C -> B 1 16
C -> C 1 16
C -> D 1 32
D -> A 3 64
D -> B 1 32
D -> C 1 32
D -> D 1 64

Einzel-Wahrscheinlichkeiten: P("A")= 3 8 ; P("B")= 1 4 ; P("C")= 1 4 ; P("D")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'A'-'B' (P= 3 32 )
  • 'B'-'A' (P= 3 32 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 = 3 16


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 2 ; "nicht Dame": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Dame')=1- 3 14 = 11 14

EreignisP
Dame -> Dame 3 14
Dame -> nicht Dame 2 7
nicht Dame -> Dame 2 7
nicht Dame -> nicht Dame 3 14

Einzel-Wahrscheinlichkeiten: P("Dame")= 1 2 ; P("nicht Dame")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 2 7 )
'nicht Dame'-'Dame' (P= 2 7 )
'nicht Dame'-'nicht Dame' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 7 + 2 7 + 3 14 = 11 14


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 6 Kugeln mit einer Eins beschriftet, 4 Kugeln mit einer Zwei, 7 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 3 38
1 -> 2 6 95
1 -> 3 21 190
1 -> 4 9 190
2 -> 1 6 95
2 -> 2 3 95
2 -> 3 7 95
2 -> 4 3 95
3 -> 1 21 190
3 -> 2 7 95
3 -> 3 21 190
3 -> 4 21 380
4 -> 1 9 190
4 -> 2 3 95
4 -> 3 21 380
4 -> 4 3 190

Einzel-Wahrscheinlichkeiten: P("1")= 3 10 ; P("2")= 1 5 ; P("3")= 7 20 ; P("4")= 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 21 380 )
'4'-'3' (P= 21 380 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 380 + 21 380 = 21 190


nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 18 95
1 -> 2 9 76
1 -> 3 27 190
2 -> 1 9 76
2 -> 2 1 19
2 -> 3 3 38
3 -> 1 27 190
3 -> 2 3 38
3 -> 3 3 38

Einzel-Wahrscheinlichkeiten: P("1")= 9 20 ; P("2")= 1 4 ; P("3")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 9 76 )
'2'-'1' (P= 9 76 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 76 + 9 76 = 9 38


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 7 3 6
= 2 7 3 3
= 2 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 8 6 7
= 2 4 3 7
= 3 14

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(