Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ableiten (ganzrational)
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten an einem Punkt (nur ganzrational)
Beispiel:
Berechne die Ableitung von f mit und gib die Steigung von f an der Stelle x=2 an:
=>
f'(2) = = = =
Ableiten nach Umformung
Beispiel:
Forme zuerst um. Berechne dann die Ableitung von f mit .
Zuerst formen wir den Funktionsterm so um, dass man ihn leicht ableiten kann:
=
=
Jetzt wird abgeleitet:
Ableiten mit vorher vereinfachen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Als erstes sollten wir den Term mal vereinfachen, damit er sich danach viel einfacher ableiten lässt.
Dazu multiplizieren wir als erstes das Produkt aus:
=
=
=
Ableiten ganzrational mit Parameter
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Stelle mit f'(x)=c finden (algebr.)
Beispiel:
Bestimme alle Stellen, an denen die Ableitung der Funktion f mit den Wert 3 hat, also dass f '(x) = 3 gilt.
Falls mehrere Lösungen existieren, diese bitte mit Semikolon (;) trennen.
Zuerst leiten wir mal f(x) ab:
Diese Ableitung muss ja = 3 sein, also setzen wir = 3.
| = | | |
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
x1,2 =
x1,2 =
x1,2 =
Da die Wurzel Null ist, gibt es nur eine Lösung:
x = =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
:
D = = =
Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.
x = ± 0 =
L={ }
ist 2-fache Lösung!
Zur Probe, ob wir uns verrechnet haben, können wir die Lösung(en) jetzt in die Ableitung einsetzen:
f '( ) = =
Stelle mit gleichem m wie best. Gerade
Beispiel:
Bestimme alle Stellen, an denen die Tangente an den Graph der Funktion f mit parallel zur Geraden y = ist.
Falls mehrere Lösungen existieren, diese bitte mit Semikolon (;) trennen.
Die Gerade y = hat als Steigung m = -2 und als y-Achsenabschnitt c = .
Wenn nun an einer Stelle x die Tangente an den Graph von f parallel zur gegebenen Geraden sein soll, müssen ihre Steigungen gleich sein.
Es muss also f '(x) = m = -2 gelten.
Zuerst leiten wir mal f(x) ab:
Diese Ableitung muss ja = -2 sein, also setzen wir = -2.
| = | | | ||
| = |
L={ }
Zur Probe, ob wir uns verrechnet haben, können wir die Lösung(en) jetzt in die Ableitung einsetzen:
f '( ) = =
Stelle mit f'(x)=c finden (komplexer)
Beispiel:
Bestimme alle Stellen, an denen die Tangente an den Graph der Funktion f mit parallel zur Geraden y = ist.
Falls mehrere Lösungen existieren, diese bitte mit Semikolon (;) trennen.
Um die Funktion später einfach ableiten zu können, sollten wir sie erstmal vereinfachen:
f(x) =
=
Die Gerade y = hat als Steigung m = 2 und als y-Achsenabschnitt c = .
Wenn nun an einer Stelle x die Tangente an den Graph von f parallel zur gegebenen Geraden sein soll, müssen ihre Steigungen gleich sein.
Es muss also f '(x) = m = 2 gelten.
Zuerst leiten wir mal f(x) ab:
=
Diese Ableitung muss ja = 2 sein, also setzen wir = 2.
| = | | | ||
| = |
L={ }
Zur Probe, ob wir uns verrechnet haben, können wir die Lösung(en) jetzt in die Ableitung einsetzen:
f '( ) = =
Ableiten an einem Punkt mit Parameter
Beispiel:
Für welches t hat die Steigung der Tangente an den Graph von f mit im Punkt (1|f(1)) den Wert -18?
=>
Jetzt setzen wir x = 1 in die Ableitungsfunktion f' ein:
=
=
Dieser Wert soll ja den Wert -18 besitzen, also gilt:
| = | | | ||
| = | |: | ||
| = |
