Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Pythagoras am Einheitskreis
Beispiel:
Für ein α zwischen 0° und 90° gilt: cos(α) = . Berechne sin(α).

Nach dem Satz des Pythagoras im Einheitskreis gilt immer:
(sin(α))2 + (cos(α))2 = 1
Umgestellt nach sin(α):
(sin(α))2 = 1 - (cos(α))2
= 1 -
= 1 -
=
Damit glit für sin(α):
sin(α) = = 0.7
sin und cos am Einheitskreis
Beispiel:

Bestimme näherungsweise sin(52°).
Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen
Am Einheitskreis kann man die Werte für sin(52°) und cos(52°) ablesen:
sin(52°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:
sin(52°) ≈ 0.79
arcsin und arccos am Einheitskreis
Beispiel:

Bestimme näherungsweise den Winkel α zwischen 0° und 90° mit cos(α) = 0.55.
Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen
Am Einheitskreis kann man den Wert für α ablesen:
cos(α) = 0.55 bedeutet, dass der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, 0.55 sein muss. Wenn man den den Winkel auf 56.6° setzt, so sieht man, dass der cos(56.6)°, also die Länge der orangen Strecke eben ≈ 0.55 ist.
cos(56.6°) ≈ 0.55
sin und cos am Einheitskreis (360°)
Beispiel:

Bestimme näherungsweise sin(90°).
Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen
Am Einheitskreis kann man die Werte für sin(90°) und cos(90°) ablesen:
sin(90°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die (vorzeichenbehaftete) Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:
sin(90°) ≈ 1
arcsin und arccos am Einheitskreis (360°)
Beispiel:

Bestimme näherungsweise alle Winkel α mit 0° ≤ α < 360° mit sin(α) = 0.45.
Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen
Am Einheitskreis kann man die beiden Werte für α ablesen:
sin(α) = 0.45 bedeutet, dass der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis 0.45 sein muss. In der Skizze sieht man, dass dies sowohl für α1 = 26.7° als auch für α2 = 153.3° der Fall ist, weil in beiden Fällen die Länge der grünen Strecke eben ≈ 0.45 ist.
sin(26.7°) ≈ 0.45 und sin(153.3°) ≈ 0.45
gleiche Winkel am Einheitskreis
Beispiel:
Gib zwei weitere Winkel an, die die gleichen Sinus- und Kosinuswerte wie 60° haben.
Da ja ein (Einheits-)Kreis 360° als Gesamtwinkel hat, gelangt man nach weiterer Drehung um +360° oder -360° wieder genau zum ursprünglichen Punkt auf dem Einheitskreis (der somit natürlich wieder die gleichen Sinus- und Kosinuswerte besitzt).
Wir müssen also einfach ein Vielfaches von 360° zu unserem Ausgangswinkel 60° addieren oder subtrahieren um weitere Winkel zu erhalten, die auf der selben Position am einheitskreis zu finden sind und somit die gleichen Sinus- und Kosinuswerte besitzen:
Z.B. α = 60° + 360° = 420°, oder β = 60° + 2 ⋅ 360° = 780°, oder auch γ = 60° - 360° = -300° ...
Winkel mit gleichem sin- oder cos-Wert
Beispiel:
Welcher Winkel zwischen 0° und 360° hat die gleichen Sinuswert wie 20°?
Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.
Wenn man also den (braunen) Ausgangswinkel 20° an der y-Achse spiegelt, erhält man wieder 20°, allerdings diesemal zwischen der negativen x-Achse und dem pinken Strich. Den gesuchten Winkel misst man ja aber immer zwischen der positiven x-Achse und dem Strich, und das ist dann ja gerade das was noch zu den 180° fehlt:
Wir können also immer einfach 180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also
α = 180° - 20° = 160°
Sinus-Funktion
Beispiel:
Ein Windrad, das sich mit konstanter Geschwindigkeit dreht, hat den Radius 24 m und braucht 15 Sekunden für eine komplette Umdrehung. Die Achse befindet sich 25 m über dem Boden. Ganz außen an einem Flügel ist ein Geschwindigkeitssensor angebracht. Zu Beginn der Beobachtung ist der Geschwindigkeitssensor auf Höhe der Achse und bewegt sich nach oben. Wie hoch über dem Boden ist der Geschwindigkeitssensor nach 14,25 Sekunden? Berechne einen Zeitpunkt, an dem der Geschwindigkeitssensor bei seiner ersten Umdrehung gerade 3,4 m über dem Boden ist?
So erhalten wir die Funktion f(α) = 24 ⋅ sin(α).
1. Gesuchte Höhe zur Zeit t = 14.25 s
Um nun die gesuchte Höhe zur gegebenen Zeit zu berechnen, müssen wir zuerst den Winkel bestimmen, der nach 14.25 s erreicht wurde. Weil ja immer gleich viel Winkel pro Zeit 'zurückgelegt' wird, genügt hierfür ein Dreisatz :
15 s ≙ 360°
1 s ≙ ° = 24°
14.25 s ≙ 24 ⋅ 14.25° ≈ 342°
sin(342°) ≈ -0.31, entsprechend ist 24 ⋅ sin(342°) ≈ -7.42
Also ist nach 14.25 s der y-Wert 7.42 m unter dem Ausgangsniveau.
Weil das Ausgangsniveau ja 25 m ist, beträgt die gesuchte Höhe also
25 m
= 17.58 m.
2. Gesuchte Zeit zur gegebenen Höhe h = 3.4 m
Die gegebenen Höhe von h = 3.4 m entspricht gerade der Höhe 3.4 m - 25 m = -21.6 m über dem Nullniveau um das die Sinusfunktion schwingt.
Wir können nun nach dem Winkel suchen, bei dem f(α) = 24 ⋅ sin(α) = -21.6 gilt.
24 ⋅ sin(α) = -21.6 |: 24
sin(α) = -0.9 | arcsin(⋅) (WTR: sin-1)
α ≈ -64.2°
Wir suchen aber Winkel zwischen 0 und 360°. Außerdem wissen wir ja, dass wenn man 360° dazu addiert, dass man dann wieder an der gleichen Stelle im Einheitskreis raus kommt. Es gilt also sin(α) = sin(α + 360°). Somit ist unser gesuchter Winkel α = -64.2° + 360° ≈ 295.8°.
Jetzt müssen wir den Dreisatz eben anders rum wie oben machen:
360° ≙ 15 s
1 ° ≙ s = s
295.8° ≙ ⋅ 295.8 s ≈ 12.325 s
Somit ist nach 12,325 s die Höhe h = 3,4 m erreicht.
Am Schaubild sehen wir, dass es aber auch noch einen zweiten Winkel β mit 24 ⋅ sin(α) = -21.6
bzw. sin(β) = -0.9. Durch die Symmetrie erkennen wir, dass dieser weitere Winkel β
gleich weit von 180° entfernt ist wie α von 0°, also gerade α von 180° entfernt.
Somit gilt
β = 180°-α = 180°-
Auch hier müssen wir wieder mit dem Dreisatz die zugehörige Zeit ermitteln:
360° ≙ 15 s
1 ° ≙ s = s
244.2° ≙ ⋅ 244.2 s ≈ 10.175 s
Somit ist nach auch 10,175 s die Höhe h = 3,4 m erreicht.