Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Radius 23 m und die Höhe h = 7 m. Bestimme sein Volumen und seine Oberfläche.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 232 m² ≈ 1661,9 m²
Für das Volumen müssen wir nun noch G = 1661.9 m² mit der Höhe h = 7 m multiplizieren:
V = G ⋅ h ≈ 1661.9 m² ⋅ 7 m ≈ 11633,32 m³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 7 m und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅23 m ≈ 144.51 m
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 1661.9 m² + 7 m ⋅ 2π ⋅ 23 m
≈ 3323.81 m² + 7 m ⋅ 144.51 m
≈ 3323.81 m² + 1011.59 m²
≈
4335,4 m²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat den Mantelflächeninhalt M = 1181.2 m² = und den Radius r = 47 m. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir den gegebenen Mantelflächeninhalt M.
Wir schreiben also einfach die Formel für den gegebenen Mantelflächeninhalt M auf und setzen alle gegebenen Größen ein.
M = U ⋅ h = 2 ⋅ π ⋅ r ⋅ h, also
2π ⋅ r ⋅ h = M
alle gegebenen Größen eingesetzt:
= 1181.2
Jetzt verrechnen wir die Werte und lösen nach h auf:
=
| = | |: | ||
| = |
Wir erhalten also h = 4 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 472 m² ≈ 6939,78 m²
Für das Volumen müssen wir nun noch G = 6939.78 m² mit der Höhe h = 4 m multiplizieren:
V = G ⋅ h ≈ 6939.78 m² ⋅ 4 m ≈ 27759,11 m³
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Oberflächeninhalt O = 650.3 cm² = und die Höhe h = 2.5 cm. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir den gegebenen Oberflächeninhalt O.
Wir schreiben also einfach die Formel für den gegebenen Oberflächeninhalt O auf und setzen alle gegebenen Größen ein.
O = 2G + M = 2π ⋅ r2 + 2π ⋅ r ⋅ h, also
2 ⋅ π ⋅ r2 + 2π ⋅ r ⋅ h = O
alle gegebenen Größen eingesetzt:
= 650.3
Wir teilen auf beiden Seiten durch 2π
Jetzt verrechnen wir die Werte und lösen nach r auf:
=
| = | | |
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
r1,2 =
r1,2 =
r1,2 =
r1 =
= =
r2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Wir erhalten also r = 9 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 92 cm² ≈ 254,47 cm²
Für das Volumen müssen wir nun noch G = 254.47 cm² mit der Höhe h = 2.5 cm multiplizieren:
V = G ⋅ h ≈ 254.47 cm² ⋅ 2.5 cm ≈ 636,17 cm³
Zylinder Anwendungen
Beispiel:
Einen 5 m lange Dachrinne hat einen halbkreisförmigen Querschnitt und ist inklusiv ihres Randes 13 cm breit (Durchmesser des Halbkreises). Die Dachrinne ist aus einem 0,26 cm dicken Blech mit einer Dichte von 8 g/cm³ gefertigt. Wie schwer ist die Dachrinne?
Der Durchmesser des gesamten Halbzylinders ist ja mit d = 13 cm gegeben, also ist der äußere Radius r = 6,5 cm.
Da die Dicke des halben Hohlylinders 0,26 cm ist, muss also der innere Radius rin = 6,24 cm sein.
Dadurch ergibt sich für den Flächeninhalt des Querschnitts des halben Hohlylinders:
G = Aout - Ain =
=
= 66,366 cm2 - 61,163 cm2
=
5,203 cm2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des halben Hohlzylinders h = 500 cm:
V = 5,203 cm2 ⋅ 500 cm = 2602 cm3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 8 g/cm3:
m = 2602 cm3 ⋅ 8 g/cm3 = 20816 g = 20,816 kg.
