Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Radius 44 cm und die Höhe h = 10 cm. Bestimme sein Volumen und seine Oberfläche.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 442 cm² ≈ 6082,12 cm²
Für das Volumen müssen wir nun noch G = 6082.12 cm² mit der Höhe h = 10 cm multiplizieren:
V = G ⋅ h ≈ 6082.12 cm² ⋅ 10 cm ≈ 60821,23 cm³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 10 cm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅44 cm ≈ 276.46 cm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 6082.12 cm² + 10 cm ⋅ 2π ⋅ 44 cm
≈ 12164.25 cm² + 10 cm ⋅ 276.46 cm
≈ 12164.25 cm² + 2764.6 cm²
≈
14928,85 cm²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat das Volumen V = 16604.9 cm³ = und die Höhe h = 5.5 cm. Bestimme den Oberflächeninhalt O dieses Zylinders.
Um den gesuchten Oberflächeninhalt O berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir das gegebene Volumen V.
Wir schreiben also einfach die Formel für das gegebene Volumen V auf und setzen alle gegebenen Größen ein.
V = G ⋅ h = π ⋅ r2 ⋅ h, also
π ⋅ r2 ⋅ h = V
alle gegebenen Größen eingesetzt:
= 16604.9
Jetzt verrechnen wir die Werte und lösen nach r auf:
=
| = | |: | ||
| = | | | ||
| r1 | = |
|
≈
|
| r2 | = |
|
≈
|
Wir erhalten also r = 31 und können nun damit den gesuchten Oberflächeninhalt O berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 312 cm² ≈ 3019,07 cm²
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 5.5 cm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅31 cm ≈ 194.78 cm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 3019.07 cm² + 5.5 cm ⋅ 2π ⋅ 31 cm
≈ 6038.14 cm² + 5.5 cm ⋅ 194.78 cm
≈ 6038.14 cm² + 1071.28 cm²
≈
7109,42 cm²
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Oberflächeninhalt O = 1357.2 m² = und den Radius r = 12 m. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir den gegebenen Oberflächeninhalt O.
Wir schreiben also einfach die Formel für den gegebenen Oberflächeninhalt O auf und setzen alle gegebenen Größen ein.
O = 2G + M = 2π ⋅ r2 + 2π ⋅ r ⋅ h, also
2 ⋅ π ⋅ r2 + 2π ⋅ r ⋅ h = O
alle gegebenen Größen eingesetzt:
Jetzt verrechnen wir die Werte und lösen nach h auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Wir erhalten also h = 6 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 122 m² ≈ 452,39 m²
Für das Volumen müssen wir nun noch G = 452.39 m² mit der Höhe h = 6 m multiplizieren:
V = G ⋅ h ≈ 452.39 m² ⋅ 6 m ≈ 2714,34 m³
Zylinder Anwendungen
Beispiel:
Einen 4,5 m lange Dachrinne hat einen halbkreisförmigen Querschnitt und ist inklusiv ihres Randes 17 cm breit (Durchmesser des Halbkreises). Die Dachrinne ist aus einem 0,42 cm dicken Blech mit einer Dichte von 8 g/cm³ gefertigt. Wie schwer ist die Dachrinne?
Der Durchmesser des gesamten Halbzylinders ist ja mit d = 17 cm gegeben, also ist der äußere Radius r = 8,5 cm.
Da die Dicke des halben Hohlylinders 0,42 cm ist, muss also der innere Radius rin = 8,08 cm sein.
Dadurch ergibt sich für den Flächeninhalt des Querschnitts des halben Hohlylinders:
G = Aout - Ain =
=
= 113,49 cm2 - 102,552 cm2
=
10,938 cm2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des halben Hohlzylinders h = 450 cm:
V = 10,938 cm2 ⋅ 450 cm = 4922 cm3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 8 g/cm3:
m = 4922 cm3 ⋅ 8 g/cm3 = 39376 g = 39,376 kg.
