Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Durchmesser 4 mm und die Höhe h = 10 mm. Bestimme sein Volumen und seine Oberfläche.
Zuerst müssen wir den Radius als halben Durchmesser berechnnen: r = mm = 2mm
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 22 mm² ≈ 12,57 mm²
Für das Volumen müssen wir nun noch G = 12.57 mm² mit der Höhe h = 10 mm multiplizieren:
V = G ⋅ h ≈ 12.57 mm² ⋅ 10 mm ≈ 125,66 mm³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 10 mm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅2 mm ≈ 12.57 mm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 12.57 mm² + 10 mm ⋅ 2π ⋅ 2 mm
≈ 25.13 mm² + 10 mm ⋅ 12.57 mm
≈ 25.13 mm² + 125.66 mm²
≈
150,8 mm²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat den Mantelflächeninhalt M = 2089.2 cm² = und den Radius r = 35 cm. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir den gegebenen Mantelflächeninhalt M.
Wir schreiben also einfach die Formel für den gegebenen Mantelflächeninhalt M auf und setzen alle gegebenen Größen ein.
M = U ⋅ h = 2 ⋅ π ⋅ r ⋅ h, also
2π ⋅ r ⋅ h = M
alle gegebenen Größen eingesetzt:
= 2089.2
Jetzt verrechnen wir die Werte und lösen nach h auf:
=
| = | |: | ||
| = |
Wir erhalten also h = 9.5 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 352 cm² ≈ 3848,45 cm²
Für das Volumen müssen wir nun noch G = 3848.45 cm² mit der Höhe h = 9.5 cm multiplizieren:
V = G ⋅ h ≈ 3848.45 cm² ⋅ 9.5 cm ≈ 36560,28 cm³
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Mantelflächeninhalt M = 449.2 m² = und den Radius r = 13 m. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir den gegebenen Mantelflächeninhalt M.
Wir schreiben also einfach die Formel für den gegebenen Mantelflächeninhalt M auf und setzen alle gegebenen Größen ein.
M = U ⋅ h = 2 ⋅ π ⋅ r ⋅ h, also
2π ⋅ r ⋅ h = M
alle gegebenen Größen eingesetzt:
= 449.2
Jetzt verrechnen wir die Werte und lösen nach h auf:
=
| = | |: | ||
| = |
Wir erhalten also h = 5.5 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 132 m² ≈ 530,93 m²
Für das Volumen müssen wir nun noch G = 530.93 m² mit der Höhe h = 5.5 m multiplizieren:
V = G ⋅ h ≈ 530.93 m² ⋅ 5.5 m ≈ 2920,11 m³
Zylinder Anwendungen
Beispiel:
Eine Firma stellt Kanalelemente aus Beton her. Diese haben die Form eines hohlen Zylinders und sind immer 4m lang. Die Querschnittsfläche des Kanals beträgt 1,584m² und wird von einer 14 cm dicken Betonwand ummantelt. Wie schwer wird das Kanalelement, wenn 1m³ Beton 2600 kg wiegt?
Zuerst versuchen wir den Radius aus dem gegebenen Flächeninhalt der inneren Querschnittsfläche Ain = 1,584 zu berechen.
Ain = π rin2
1,584 m² = π rin2 | :π
0,504 m² = rin2
0,71 m ≈ rin
Der Radius des inneren Kreises ist also rin = 0,71 m.
Die Differenz der Radien (vom äußeren und inneren Kreis) beträgt 0,14 m, also beträgt der Radius des äußeren Kreises rout = 0,85 m.
Die gesamte Kreisfläche hat den Flächeninhalt Aout = π ⋅ r²
= π ⋅ 0,852 ≈ 2,27 m2
Da der innere Kreis ja den Flächeninhalt Ain = 1,584 m2 hat, gilt für den Flächeninhalt des (in der Skizze blau eingefärbten)
Kreisrings
G = Aout - Ain = 2,27 m2 - 1,584 m2 = 0,686 m2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des Hohlzylinders h = 4 m:
V = 0,686 m2 ⋅ 4 m = 2,744 m3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 2600 kg/m3:
m = 2,744 m3 ⋅ 2600 kg/m3 = 7134,4 kg.
