nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hypothesen-Test linksseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,45. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 25 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit, dass der Trainer aufgrund des Signifikanztests die Trefferwahrscheinlichkeit irrtümlicherweise als niedriger annimmt?

Lösung einblenden
kP(X≤k)
......
10
20.0001
30.0005
40.0023
50.0086
60.0258
70.0639
80.134
90.2424
100.3843
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.45 zu verwerfen. Der Test soll bestätigen, dass p<0.45 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(25,0.45,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 6 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.45 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.45 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0258 =2.58% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;6]

Nicht-Ablehnungsbereich von H0: [7;25]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;6], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [7;25], so muss die Nullhypothese beibehalten werden.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen seine bisherige Trefferwahrscheinlichkeit von p=0,4 inzwischen verbessert. Sein Trainer glaubt ihm sich das nicht. Um seine Verbesserung zu überprüfen, wird ein Signifikanz-Test mit 99 Würfen des Basketballspieler vereinbart. Dabei soll die Irrtumswahrscheinlichkeit berechnet werden können, dass man aufgrund des Test eine höhere Treffer-Quote annimmt, obwohl dies in Wirklichkeit gar nicht der Fall ist. In welchem Intervall müssen die Treffer liegen, damit sich der Spieler auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
430.7888
440.8426
450.8864
460.9207
470.9465
480.9651
490.9781
500.9867
510.9922
520.9956
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.4 zu verwerfen. Der Test soll bestätigen, dass p>0.4 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(99,0.4,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 48 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;48]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 49 Treffern beginnt.

Ablehnungsbereich von H0: [49;99]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.4 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.4 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0349 =3.49% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [49;99], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;48], so muss die Nullhypothese beibehalten werden.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Zlatan Ibrahimovic behauptet von sich, dass er mit mindestens 70% Wahrscheinlichkeit von der Strafraumgrenze die Querlatte des Tores treffe. Obwohl Ibrahimovic für seine geradezu legendäre Bescheidenheit und Demut bekannt ist, zweifelt ein Mitspieler an dieser Quote. Sie einigen sich auf einen Test mit 99 Versuchen und einem Signifikanzniveau von 0,1% (was auch immer Ibrahimovic darunter verstehen mag). In welchem Bereich muss die Anzahl der Lattentreffer liegen, um den schwedischen Stürmer der Prahlerei zu überführen, also dass man eine irrtümliche Anzweiflung der Trefferquote rechnerisch abschätzen kann?Berechne dann diese Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
490
500
510.0001
520.0002
530.0004
540.0008
550.0017
560.0032
570.0058
580.0103
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.7 zu verwerfen. Der Test soll bestätigen, dass p<0.7 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(99,0.7,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 54 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.7 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.7 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0008 =0.08% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;54]

Nicht-Ablehnungsbereich von H0: [55;99]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;54], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [55;99], so muss die Nullhypothese beibehalten werden.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,14 gesunken ist. Um dies nachzuweisen, soll ein 65-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,08. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00.0001
10.0006
20.0037
30.0141
40.0404
50.0926
60.1775
70.2941
80.4316
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.14 zu verwerfen. Der Test soll bestätigen, dass p<0.14 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(65,0.14,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 4 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.14 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.14 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0404 =4.04% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;4]

Nicht-Ablehnungsbereich von H0: [5;65]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;4], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [5;65], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.14 falsch, weil ja in Wirklichkeit p=0.08 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 5 bis 65, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.08) beträgt nun: P0.0865 (X5) =1- P0.0865 (X4) ≈ 1-0.3977 ≈ 0.6023

Mit 60.23% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= 1 37 wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 140 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= 1 37 statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0216
10.1055
20.2676
30.4746
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 37 zu verwerfen. Der Test soll bestätigen, dass p< 1 37 oder p> 1 37 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=140 und p= 1 37 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 0 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
60.9134
70.9629
80.9857
90.995
100.9984
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=8 erstmals P 1 37 140 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 9 bis 140 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 9 bis 140.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 37 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 37 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 37 140 (X0) = 0.0216 auf der linken Seite und P 1 37 140 (X9) = 1-0.9857 = 0.0143 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0216 + 0.0143 = 0.0358 =3.58% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;0] und [9;140]

Nicht-Ablehnungsbereich von H0: [1;8]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;0] oder [9;140], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [1;8], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 60% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung einen Hypothesentest in Form einer Befragung von 900 Kunden durchzuführen. Dabei soll das Risiko auf 5% begrenzt werden, dass aufgrund des Tests die App entwickelt wird, obwohl sich diese Investition wirtschaftlich nicht lohnen wird.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 60%

error

Wenn die Nullhypothese H0: " ... mindestens 60%", also p ≥ 0.6 lautet, soll ja der Test "bestätigen", dass p < 0.6 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 5% sein muss, falls die Nullhypothese H0: p ≥ 0.6 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.6 abzulehnen, obwohl es stimmt, ist somit kleiner als 5%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.6 irrtümlicherweise abzulehnen, damit p < 0.6 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 5% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 5%

error

Die Nullhypothese H0: " ... mindestens 5%", also p ≥ 0.05 macht keinen Sinn, weil die 5%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=60% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

3. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 60%

ok

Wenn die Nullhypothese H0: " ... höchstens 60%", also p ≤ 0.6 lautet, soll ja der Test "bestätigen", dass p > 0.6 ist - also ist es ein rechtsseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 5% sein muss, falls die Nullhypothese H0: p ≤ 0.6 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.6 abzulehnen, obwohl es stimmt, ist somit kleiner als 5%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.6 irrtümlicherweise abzulehnen, damit p > 0.6 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 5% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

4. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 5%

error

Die Nullhypothese H0: " ... höchstens 5%", also p ≤ 0.05 macht keinen Sinn, weil die 5%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=60% gehen, also den Prozentsatz der Kunden, die die App installieren werden.