Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Hypothesen-Test linksseitig
Beispiel:
Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,15. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 20 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit, dass der Trainer aufgrund des Signifikanztests die Trefferwahrscheinlichkeit irrtümlicherweise als niedriger annimmt?
| k | P(X≤k) |
|---|---|
| 0 | 0.0388 |
| 1 | 0.1756 |
| 2 | 0.4049 |
| 3 | 0.6477 |
| 4 | 0.8298 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.15 zu verwerfen. Der Test soll bestätigen, dass p<0.15 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(20,0.15,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 0 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.15 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.15 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0388 =3.88% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;0]
Nicht-Ablehnungsbereich von H0: [1;20]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;0], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [1;20], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test rechtsseitig
Beispiel:
Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p> 0,3 ist. Dazu soll die Nullhypothese H0: p≤0,3 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=53 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 0,1% betragen.In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um die Nullhypothese statistisch begründet ablehnen zu können? Wie groß ist in diesem Fall die Wahrscheinlichkeit, dass die Nullhypothese fälschlicherweise abgelehnt, weil bei dem Zufallsexperiment ein Treffer in den Ablehnungsbereich fällt, obwohl die Nullhypothese richtig ist?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 22 | 0.9734 |
| 23 | 0.9866 |
| 24 | 0.9937 |
| 25 | 0.9972 |
| 26 | 0.9989 |
| 27 | 0.9996 |
| 28 | 0.9998 |
| 29 | 0.9999 |
| 30 | 1 |
| 31 | 1 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.3 zu verwerfen. Der Test soll bestätigen, dass p>0.3 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.
Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.001= 0.999 Wahrscheinlichkeit auf sich vereinen muss.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(53,0.3,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 27 erstmals mindestens 99.9% der Gesamt-Wahrscheinlichkeit ausmachen.
Nicht-Ablehnungsbereich von H0: [0;27]
Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 28 Treffern beginnt.
Ablehnungsbereich von H0: [28;53]
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.3 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.3 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0004 =0.04% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [28;53], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;27], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test linksseitig
Beispiel:
Der Prager Gaststättenverband behauptet stolz, dass 91% ihrer Gaststätten das strenge Alkoholverbot für Jugendliche (kein Bier unter 18!) konsequent umsetzen. Das tschechische blaue Kreuz bezweifelt das und glaubt dass es weit weniger konsequent umgesetzt wird. Eine zufällig sich in Prag aufhaltende Biberacher Schülergruppe erklärt sich bereit, eine Hypothesen-Test mit einem Signifikanzniveau von α=1% durchzuführen. Dabei versuchen 17-jährige SchülerInnen in 67 Kneipen ein Bier zu bestellen. Gib den Bereich an, wie viele Gaststätten dabei den Jugendlichen den Alkoholkonsum verweigern müssten, damit das blaue Kreuz die Behauptung des Gaststättenverbands statistisch begründet anzweifeln könnte. Gib die Irrtumswahrscheinlichkeit an, dass die 91%-Aussage des Prager Gaststättenverband irrtümlicherweise aufgrund des Tests verworfen wurde, obwohl sie in Wirklichkeit stimmt.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 49 | 0 |
| 50 | 0.0001 |
| 51 | 0.0002 |
| 52 | 0.0008 |
| 53 | 0.0023 |
| 54 | 0.0062 |
| 55 | 0.0157 |
| 56 | 0.0362 |
| 57 | 0.0762 |
| 58 | 0.146 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.91 zu verwerfen. Der Test soll bestätigen, dass p<0.91 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(67,0.91,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 54 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.91 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.91 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0062 =0.62% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;54]
Nicht-Ablehnungsbereich von H0: [55;67]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;54], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [55;67], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 2. Art
Beispiel:
Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,24 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 68 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt. a) In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt? b) In Wirklichkeit liegt die Ausfallwahrscheinlickeit der Leuchtmittel nur bei p=0,15. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der defekten Leuchtmittel nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 5 | 0.0003 |
| 6 | 0.0012 |
| 7 | 0.0036 |
| 8 | 0.0093 |
| 9 | 0.0214 |
| 10 | 0.0439 |
| 11 | 0.0815 |
| 12 | 0.1377 |
| 13 | 0.2143 |
| 14 | 0.3093 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.24 zu verwerfen. Der Test soll bestätigen, dass p<0.24 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(68,0.24,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 10 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.24 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.24 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0439 =4.39% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;10]
Nicht-Ablehnungsbereich von H0: [11;68]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;10], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [11;68], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
In dieser Aufgabe ist ja aber H0:p=0.24 falsch, weil ja in Wirklichkeit p=0.15 ist.
Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 11 bis 68, so dass H0 (irrtümlicherweise) nicht verworfen wurde.
Diese Wahrscheinlichkeit (mit dem richtigen p=0.15) beträgt nun: =1- ≈ 1-0.5562 ≈ 0.4438
Mit 44.38% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.
zweiseitiger Test
Beispiel:
Es wird vermutet, dass bei einem Glücksspiel die Gewinnwahrscheinlichkeit nicht wie angegeben 40% beträgt. Die Vermutung soll durch einen zweiseitigen Hypothesentest mit Stichprobenumfang n = 76 auf einem Signifikanzniveau von 5% überprüft werden. In welchen Bereichen muss die Anzahl der Gewinne bei der Stichprobe liegen, um diese Vermutung statistisch zu belegen? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 20 | 0.009 |
| 21 | 0.017 |
| 22 | 0.0304 |
| 23 | 0.0514 |
| 24 | 0.0822 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 0.4 zu verwerfen. Der Test soll bestätigen, dass p<0.4 oder p>0.4 ist, es ist ein zweiseitiger Hypothesentest.
Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.
Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.
Linke Seite:
Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=76 und p=0.4), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 21 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs
| k | P(X≤k) |
|---|---|
| ... | ... |
| 37 | 0.9508 |
| 38 | 0.9701 |
| 39 | 0.9827 |
| 40 | 0.9904 |
| 41 | 0.9949 |
| ... | ... |
Rechte Seite:
Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.
In der Tabelle links erkennt man, dass bei k=39 erstmals ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 40 bis 76 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.
Der Ablehnungsbereich auf der rechten Seite ist somit von 40 bis 76.
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p=0.4 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠0.4 als statistisch abgesichert betrachten darf.
Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von
=
0.017 auf der linken Seite und
= 1-0.9827
= 0.0173 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit
PIrr = 0.017 + 0.0173 = 0.0343
=3.43% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;21] und [40;76]
Nicht-Ablehnungsbereich von H0: [22;39]
Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;21] oder [40;76], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [22;39], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 1. Art beurteilen
Beispiel:
Eine Firma möchte den Preis für ihr umsatzstärkstes Produkt erhöhen. Die Marketingabteilung geht davon aus, dass dadurch 12% der Kunden zu einem Mitbewerberprodukt wechseln und somit der Umsatz so stark zurückgehen würde, dass sich die Preiserhöhung gar nicht lohnt. Die Geschäftsführung ist sich aber nicht ganz sicher, ob diese Zahl verlässlich ist und beschließt, einen Hypothesentest mit 600 Personen durchzuführen, die befragt werden, ob sie bei der Preiserhöhung zu einem anderen Produkt wechseln würden. Dabei möchte sie das Risiko auf 4% begrenzen, dass aufgrund des Tests irrtümlicherweise auf die Preiserhöhung verzichtet wird, obwohl diese sinnvoll wäre.
Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.
Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:
1. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt höchstens 12%
Wenn die Nullhypothese H0: " ... höchstens 12%", also p ≤ 0.12 lautet, soll ja der Test "bestätigen", dass p > 0.12 ist - also ist es ein rechtsseitiger Hypothesentest.
Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 4% sein muss, falls die Nullhypothese H0: p ≤ 0.12 doch stimmen sollte.
Die Wahrscheinlichkeit, p ≤ 0.12 abzulehnen, obwohl es stimmt, ist somit kleiner als 4%
In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.12 irrtümlicherweise abzulehnen, damit p > 0.12 anzunehmen (obwohl dies falsch ist), und somit auf die Preiserhöhung zu verzichten (obwohl diese sinnvoll wäre), auf unter 4% begrenzt werden könnte.
Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.
2. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt mindestens 12%
Wenn die Nullhypothese H0: " ... mindestens 12%", also p ≥ 0.12 lautet, soll ja der Test "bestätigen", dass p < 0.12 ist - also ist es ein linksseitiger Hypothesentest.
Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 4% sein muss, falls die Nullhypothese H0: p ≥ 0.12 doch stimmen sollte.
Die Wahrscheinlichkeit, p ≥ 0.12 abzulehnen, obwohl es stimmt, ist somit kleiner als 4%.
In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.12 irrtümlicherweise abzulehnen, damit p < 0.12 anzunehmen (obwohl dies falsch ist), und somit die Preiserhöhung durchzuführen und einen Umsatzeinbruch zu riskieren, auf unter 4% begrenzt werden könnte.
Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.
3. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt höchstens 4%
Die Nullhypothese H0: " ... höchstens 4%", also p ≤ 0.04 macht keinen Sinn, weil die 4%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.
In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=12% gehen, also wieviel Prozent bei einer Preiserhöhung zu einem Mitbewerberprodukt wechseln.
4. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt mindestens 4%
Die Nullhypothese H0: " ... mindestens 4%", also p ≥ 0.04 macht keinen Sinn, weil die 4%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.
In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=12% gehen, also wieviel Prozent bei einer Preiserhöhung zu einem Mitbewerberprodukt wechseln.
