nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hypothesen-Test linksseitig

Beispiel:

Der Prager Gaststättenverband behauptet stolz, dass 81% ihrer Gaststätten das strenge Alkoholverbot für Jugendliche (kein Bier unter 18!) konsequent umsetzen. Das tschechische blaue Kreuz bezweifelt das und glaubt dass es weit weniger konsequent umgesetzt wird. Eine zufällig sich in Prag aufhaltende Biberacher Schülergruppe erklärt sich bereit, eine Hypothesen-Test mit einem Signifikanzniveau von α=5% durchzuführen. Dabei versuchen 17-jährige SchülerInnen in 87 Kneipen ein Bier zu bestellen. Gib den Bereich an, wie viele Gaststätten dabei den Jugendlichen den Alkoholkonsum verweigern müssten, damit das blaue Kreuz die Behauptung des Gaststättenverbands statistisch begründet anzweifeln könnte. Gib die Irrtumswahrscheinlichkeit an, dass die 81%-Aussage des Prager Gaststättenverband irrtümlicherweise aufgrund des Tests verworfen wurde, obwohl sie in Wirklichkeit stimmt.

Lösung einblenden
kP(X≤k)
......
580.0011
590.0023
600.0049
610.0096
620.0181
630.0326
640.0556
650.0903
660.1397
670.2057
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.81 zu verwerfen. Der Test soll bestätigen, dass p<0.81 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(87,0.81,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 63 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.81 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.81 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0326 =3.26% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;63]

Nicht-Ablehnungsbereich von H0: [64;87]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;63], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [64;87], so muss die Nullhypothese beibehalten werden.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Altpapierbehälter zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 84 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 5% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer statistisch belegt zu triumphieren zu können? Wie hoch ist dann die Irrtumswahrscheinlichkeit, dass die Trefferqutoe von höchstens 10% fälschlicherweise abgelehnt wurde?

Lösung einblenden
kP(X≤k)
......
80.534
90.6702
100.7837
110.8686
120.9259
130.9612
140.9811
150.9914
160.9964
170.9986
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(84,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 13 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;13]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 14 Treffern beginnt.

Ablehnungsbereich von H0: [14;84]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0388 =3.88% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [14;84], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;13], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p> 0,8 ist. Dazu soll die Nullhypothese H0: p≤0,8 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=51 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um die Nullhypothese statistisch begründet ablehnen zu können? Wie groß ist in diesem Fall die Wahrscheinlichkeit, dass die Nullhypothese fälschlicherweise abgelehnt, weil bei dem Zufallsexperiment ein Treffer in den Ablehnungsbereich fällt, obwohl die Nullhypothese richtig ist?

Lösung einblenden
kP(X≤k)
......
400.4444
410.5835
420.7161
430.827
440.9077
450.9579
460.9841
470.9952
480.9989
490.9998
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.8 zu verwerfen. Der Test soll bestätigen, dass p>0.8 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(51,0.8,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 45 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;45]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 46 Treffern beginnt.

Ablehnungsbereich von H0: [46;51]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.8 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.8 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0421 =4.21% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [46;51], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;45], so muss die Nullhypothese beibehalten werden.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,14 gesunken ist. Um dies nachzuweisen, soll ein 81-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,07. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00
10.0001
20.0005
30.0023
40.0081
50.0226
60.0525
70.1046
80.1831
90.2867
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.14 zu verwerfen. Der Test soll bestätigen, dass p<0.14 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(81,0.14,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 5 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.14 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.14 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0226 =2.26% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;5]

Nicht-Ablehnungsbereich von H0: [6;81]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;5], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [6;81], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.14 falsch, weil ja in Wirklichkeit p=0.07 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 6 bis 81, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.07) beträgt nun: P0.0781 (X6) =1- P0.0781 (X5) ≈ 1-0.4959 ≈ 0.5041

Mit 50.41% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Es wird vermutet, dass bei einem Glücksspiel die Gewinnwahrscheinlichkeit nicht wie angegeben 70% beträgt. Die Vermutung soll durch einen zweiseitigen Hypothesentest mit Stichprobenumfang n = 84 auf einem Signifikanzniveau von 5% überprüft werden. In welchen Bereichen muss die Anzahl der Gewinne bei der Stichprobe liegen, um diese Vermutung statistisch zu belegen? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
480.0084
490.0152
500.0263
510.0435
520.069
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 0.7 zu verwerfen. Der Test soll bestätigen, dass p<0.7 oder p>0.7 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=84 und p=0.7), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 49 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
650.9479
660.9699
670.9837
680.9918
690.9962
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=67 erstmals P0.784 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 68 bis 84 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 68 bis 84.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p=0.7 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠0.7 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P0.784 (X49) = 0.0152 auf der linken Seite und P0.784 (X68) = 1-0.9837 = 0.0163 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0152 + 0.0163 = 0.0314 =3.14% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;49] und [68;84]

Nicht-Ablehnungsbereich von H0: [50;67]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;49] oder [68;84], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [50;67], so muss die Nullhypothese beibehalten werden.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 40% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung, einen Hypothesentest in Form einer Befragung von 200 Kunden durchzuführen. Dabei soll das Risiko auf 15% begrenzt werden, dass aufgrund des Tests die App gar nicht entwickelt wird, obwohl diese wirtschaftlich sinnvoll gewesen wäre.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 15%

error

Die Nullhypothese H0: " ... höchstens 15%", also p ≤ 0.15 macht keinen Sinn, weil die 15%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=40% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 40%

ok

Wenn die Nullhypothese H0: " ... mindestens 40%", also p ≥ 0.4 lautet, soll ja der Test "bestätigen", dass p < 0.4 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 15% sein muss, falls die Nullhypothese H0: p ≥ 0.4 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.4 abzulehnen, obwohl es stimmt, ist somit kleiner als 15%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.4 irrtümlicherweise abzulehnen, damit p < 0.4 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 15% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

3. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 40%

error

Wenn die Nullhypothese H0: " ... höchstens 40%", also p ≤ 0.4 lautet, soll ja der Test "bestätigen", dass p > 0.4 ist - also ist es ein rechtsseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 15% sein muss, falls die Nullhypothese H0: p ≤ 0.4 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.4 abzulehnen, obwohl es stimmt, ist somit kleiner als 15%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.4 irrtümlicherweise abzulehnen, damit p > 0.4 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 15% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

4. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 15%

error

Die Nullhypothese H0: " ... mindestens 15%", also p ≥ 0.15 macht keinen Sinn, weil die 15%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=40% gehen, also den Prozentsatz der Kunden, die die App installieren werden.