Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Hypothesen-Test linksseitig
Beispiel:
Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 96 Würfen und einem Signifikanzniveau von 5%. In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann (- also, dass das Risiko, die 6er-Wahrscheinlichkeit irrtümlicherweise als zu gering anzunehmen, berechenbar ist.) Wie hoch ist dann diese Irrtumswahrscheinlichkeit?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 4 | 0.0002 |
| 5 | 0.0007 |
| 6 | 0.0021 |
| 7 | 0.006 |
| 8 | 0.0145 |
| 9 | 0.0311 |
| 10 | 0.06 |
| 11 | 0.1052 |
| 12 | 0.1693 |
| 13 | 0.2521 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ zu verwerfen. Der Test soll bestätigen, dass p< ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(96,,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 9 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0311 =3.11% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;9]
Nicht-Ablehnungsbereich von H0: [10;96]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;9], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [10;96], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test rechtsseitig
Beispiel:
Ein defektes Kopiergerät, welches viele fehlerhafte Kopien produzierte, wurde repariert. Die mit der Reparatur beauftrage Firma behauptet, dass die Ausschussquote jetzt nur noch höchstens 0,03 beträgt. Um diese Behauptung (Nullhypothese) auf dem Signifikanzniveau von 0,1% zu testen, werden 100 Kopien angefertigt. Ermittle die zugehörige Entscheidungsregel.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 4 | 0.8179 |
| 5 | 0.9192 |
| 6 | 0.9688 |
| 7 | 0.9894 |
| 8 | 0.9968 |
| 9 | 0.9991 |
| 10 | 0.9998 |
| 11 | 1 |
| 12 | 1 |
| 13 | 1 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.03 zu verwerfen. Der Test soll bestätigen, dass p>0.03 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.
Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.001= 0.999 Wahrscheinlichkeit auf sich vereinen muss.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(100,0.03,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 9 erstmals mindestens 99.9% der Gesamt-Wahrscheinlichkeit ausmachen.
Nicht-Ablehnungsbereich von H0: [0;9]
Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 10 Treffern beginnt.
Ablehnungsbereich von H0: [10;100]
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.03 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.03 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0009 =0.09% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [10;100], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;9], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test linksseitig
Beispiel:
Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,4. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 25 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 1% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit, dass der Trainer aufgrund des Signifikanztests die Trefferwahrscheinlichkeit irrtümlicherweise als niedriger annimmt?
| k | P(X≤k) |
|---|---|
| 0 | 0 |
| 1 | 0.0001 |
| 2 | 0.0004 |
| 3 | 0.0024 |
| 4 | 0.0095 |
| 5 | 0.0294 |
| 6 | 0.0736 |
| 7 | 0.1536 |
| 8 | 0.2735 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.4 zu verwerfen. Der Test soll bestätigen, dass p<0.4 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(25,0.4,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 4 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.4 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.4 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0095 =0.95% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;4]
Nicht-Ablehnungsbereich von H0: [5;25]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;4], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [5;25], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 2. Art
Beispiel:
Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,24 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 80 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt. a) In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt? b) In Wirklichkeit liegt die Ausfallwahrscheinlickeit der Leuchtmittel nur bei p=0,12. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der defekten Leuchtmittel nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 7 | 0.0004 |
| 8 | 0.0012 |
| 9 | 0.0034 |
| 10 | 0.0081 |
| 11 | 0.0176 |
| 12 | 0.0349 |
| 13 | 0.0635 |
| 14 | 0.1066 |
| 15 | 0.1666 |
| 16 | 0.2435 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.24 zu verwerfen. Der Test soll bestätigen, dass p<0.24 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(80,0.24,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 12 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.24 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.24 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0349 =3.49% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;12]
Nicht-Ablehnungsbereich von H0: [13;80]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;12], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [13;80], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
In dieser Aufgabe ist ja aber H0:p=0.24 falsch, weil ja in Wirklichkeit p=0.12 ist.
Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 13 bis 80, so dass H0 (irrtümlicherweise) nicht verworfen wurde.
Diese Wahrscheinlichkeit (mit dem richtigen p=0.12) beträgt nun: =1- ≈ 1-0.8415 ≈ 0.1585
Mit 15.85% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.
zweiseitiger Test
Beispiel:
Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 170 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?
| k | P(X≤k) |
|---|---|
| 0 | 0.0095 |
| 1 | 0.0543 |
| 2 | 0.1594 |
| 3 | 0.323 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = zu verwerfen. Der Test soll bestätigen, dass p< oder p> ist, es ist ein zweiseitiger Hypothesentest.
Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.
Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.
Linke Seite:
Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=170 und p=), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 0 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs
| k | P(X≤k) |
|---|---|
| ... | ... |
| 7 | 0.9083 |
| 8 | 0.9575 |
| 9 | 0.9821 |
| 10 | 0.9931 |
| 11 | 0.9976 |
| ... | ... |
Rechte Seite:
Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.
In der Tabelle links erkennt man, dass bei k=9 erstmals ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 10 bis 170 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.
Der Ablehnungsbereich auf der rechten Seite ist somit von 10 bis 170.
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ als statistisch abgesichert betrachten darf.
Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von
=
0.0095 auf der linken Seite und
= 1-0.9821
= 0.0179 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit
PIrr = 0.0095 + 0.0179 = 0.0274
=2.74% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;0] und [10;170]
Nicht-Ablehnungsbereich von H0: [1;9]
Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;0] oder [10;170], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [1;9], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 1. Art beurteilen
Beispiel:
Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 55% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung, einen Hypothesentest in Form einer Befragung von 700 Kunden durchzuführen. Dabei soll das Risiko auf 17% begrenzt werden, dass aufgrund des Tests die App gar nicht entwickelt wird, obwohl diese wirtschaftlich sinnvoll gewesen wäre.
Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.
Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:
1. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 55%
Wenn die Nullhypothese H0: " ... mindestens 55%", also p ≥ 0.55 lautet, soll ja der Test "bestätigen", dass p < 0.55 ist - also ist es ein linksseitiger Hypothesentest.
Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 17% sein muss, falls die Nullhypothese H0: p ≥ 0.55 doch stimmen sollte.
Die Wahrscheinlichkeit, p ≥ 0.55 abzulehnen, obwohl es stimmt, ist somit kleiner als 17%.
In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.55 irrtümlicherweise abzulehnen, damit p < 0.55 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 17% begrenzt werden könnte.
Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.
2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 17%
Die Nullhypothese H0: " ... mindestens 17%", also p ≥ 0.17 macht keinen Sinn, weil die 17%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.
In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=55% gehen, also den Prozentsatz der Kunden, die die App installieren werden.
3. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 17%
Die Nullhypothese H0: " ... höchstens 17%", also p ≤ 0.17 macht keinen Sinn, weil die 17%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.
In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=55% gehen, also den Prozentsatz der Kunden, die die App installieren werden.
4. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 55%
Wenn die Nullhypothese H0: " ... höchstens 55%", also p ≤ 0.55 lautet, soll ja der Test "bestätigen", dass p > 0.55 ist - also ist es ein rechtsseitiger Hypothesentest.
Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 17% sein muss, falls die Nullhypothese H0: p ≤ 0.55 doch stimmen sollte.
Die Wahrscheinlichkeit, p ≤ 0.55 abzulehnen, obwohl es stimmt, ist somit kleiner als 17%
In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.55 irrtümlicherweise abzulehnen, damit p > 0.55 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 17% begrenzt werden könnte.
Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.
