nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hypothesen-Test linksseitig

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 86 Würfen und einem Signifikanzniveau von 1%. In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann (- also, dass das Risiko, die 6er-Wahrscheinlichkeit irrtümlicherweise als zu gering anzunehmen, berechenbar ist.) Wie hoch ist dann diese Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
10
20
30.0002
40.0007
50.0024
60.0071
70.0177
80.0388
90.0753
100.1315
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(86, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 6 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0071 =0.71% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;6]

Nicht-Ablehnungsbereich von H0: [7;86]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;6], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [7;86], so muss die Nullhypothese beibehalten werden.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Einem partystarken 12-Klässler wird von einem nicht ganz vorurteilsfreien Lehrer vorgeworfen, nichts auf die Klassenarbeit gelernt haben. Diese findet in Form eines Multiple Choice-Tests mit 80 Aufgaben statt, bei der genau eine der vier Antwortmöglichkeiten richtig ist. In welchem Bereich muss nun die Anzahl der richtigen Antworten liegen, damit er auf einem Signifikanzniveau von 5% die Behauptung des Lehrers widerlegen kann.

Lösung einblenden
kP(X≤k)
......
210.6574
220.7447
230.8181
240.8761
250.9195
260.9501
270.9705
280.9834
290.9911
300.9954
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.25 zu verwerfen. Der Test soll bestätigen, dass p>0.25 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(80,0.25,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 26 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;26]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 27 Treffern beginnt.

Ablehnungsbereich von H0: [27;80]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.25 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.25 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0499 =4.99% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [27;80], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;26], so muss die Nullhypothese beibehalten werden.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen seine bisherige Trefferwahrscheinlichkeit von p=0,35 inzwischen verbessert. Sein Trainer glaubt ihm sich das nicht. Um seine Verbesserung zu überprüfen, wird ein Signifikanz-Test mit 97 Würfen des Basketballspieler vereinbart. Dabei soll die Irrtumswahrscheinlichkeit berechnet werden können, dass man aufgrund des Test eine höhere Treffer-Quote annimmt, obwohl dies in Wirklichkeit gar nicht der Fall ist. In welchem Intervall müssen die Treffer liegen, damit sich der Spieler auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
370.7764
380.8338
390.8806
400.9171
410.9444
420.9641
430.9776
440.9865
450.9922
460.9956
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.35 zu verwerfen. Der Test soll bestätigen, dass p>0.35 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(97,0.35,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 42 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;42]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 43 Treffern beginnt.

Ablehnungsbereich von H0: [43;97]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.35 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.35 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0359 =3.59% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [43;97], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;42], so muss die Nullhypothese beibehalten werden.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,1 gesunken ist. Um dies nachzuweisen, soll ein 95-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,06. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00
10.0005
20.003
30.0115
40.0334
50.0775
60.1511
70.255
80.382
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.1 zu verwerfen. Der Test soll bestätigen, dass p<0.1 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(95,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 4 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0334 =3.34% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;4]

Nicht-Ablehnungsbereich von H0: [5;95]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;4], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [5;95], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.1 falsch, weil ja in Wirklichkeit p=0.06 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 5 bis 95, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.06) beträgt nun: P0.0695 (X5) =1- P0.0695 (X4) ≈ 1-0.3195 ≈ 0.6805

Mit 68.05% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= 1 37 wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 210 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= 1 37 statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0032
10.0217
20.0754
30.1788
40.3274
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 37 zu verwerfen. Der Test soll bestätigen, dass p< 1 37 oder p> 1 37 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=210 und p= 1 37 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
90.9392
100.9713
110.9875
120.9949
130.9981
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=11 erstmals P 1 37 210 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 12 bis 210 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 12 bis 210.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 37 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 37 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 37 210 (X1) = 0.0217 auf der linken Seite und P 1 37 210 (X12) = 1-0.9875 = 0.0125 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0217 + 0.0125 = 0.0342 =3.42% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1] und [12;210]

Nicht-Ablehnungsbereich von H0: [2;11]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;1] oder [12;210], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [2;11], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Der Hersteller eines Männershampoos bewirbt sein Produkt damit, dass es bei 80% aller Probanden die kahlen Stellen am Kopf wieder zuwachsen lassen würde. Weil bei Verbraucherschützern Zweifel daran aufkommen, lässt die Firma einen Hypothesentest mit 400 Männern durchführen, die täglich das Shampoo benutzen müssen. Dabei soll das Risiko auf 4% begrenzt werden, dass aufgrund des Tests weiterhin mit diesem Prozentsatz geworben wird, obwohl dieser in Wirklichkeit niedriger liegt und die Gefahr einer Klage von Verbraucherschützern droht.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Männer, bei denen das Shampoo wirkt, beträgt höchstens 4%

error

Die Nullhypothese H0: " ... höchstens 4%", also p ≤ 0.04 macht keinen Sinn, weil die 4%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=80% gehen, also den Prozentsatz der Männer, bei denen das Shampoo wirkt.

2. Der Prozentsatz der Männer, bei denen das Shampoo wirkt, beträgt mindestens 80%

error

Wenn die Nullhypothese H0: " ... mindestens 80%", also p ≥ 0.8 lautet, soll ja der Test "bestätigen", dass p < 0.8 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungesbreich kleiner als das Signifikanzniveau α = 4% sein muss, falls die Nullhypothese H0: p ≥ 0.8 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.8 abzulehnen, obwohl es stimmt, ist somit kleiner als 4%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.8 irrtümlicherweise abzulehnen, damit p < 0.8 anzunehmen (obwohl dies falsch ist), und somit nicht mehr mit diesem hohen Prozentsatz zu werben, obwohl dieser richtig ist, auf unter 4% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

3. Der Prozentsatz der Männer, bei denen das Shampoo wirkt, beträgt mindestens 4%

error

Die Nullhypothese H0: " ... mindestens 4%", also p ≥ 0.04 macht keinen Sinn, weil die 4%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=80% gehen, also den Prozentsatz der Männer, bei denen das Shampoo wirkt.

4. Der Prozentsatz der Männer, bei denen das Shampoo wirkt, beträgt höchstens 80%

ok

Wenn die Nullhypothese H0: " ... höchstens 80%", also p ≤ 0.8 lautet, soll ja der Test "bestätigen", dass p > 0.8 ist - also ist es ein rechtseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungesbreich kleiner als das Signifikanzniveau α = 4% sein muss, falls die Nullhypothese H0: p ≤ 0.8 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.8 abzulehnen, obwohl es stimmt, ist somit kleiner als 4%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.8 irrtümlicherweise abzulehnen, damit p > 0.8 anzunehmen (obwohl dies falsch ist), und somit weiterhin mit diesem hohen Prozentsatz zu werben, obwohl er in Wirklichkeit niedriger ist und eine Klage von Verbraucherschützern riskieren, auf unter 4% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340