nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hypothesen-Test linksseitig

Beispiel:

Zlatan Ibrahimovic behauptet von sich, dass er mit mindestens 90% Wahrscheinlichkeit von der Strafraumgrenze die Querlatte des Tores treffe. Obwohl Ibrahimovic für seine geradezu legendäre Bescheidenheit und Demut bekannt ist, zweifelt ein Mitspieler an dieser Quote. Sie einigen sich auf einen Test mit 56 Versuchen und einem Signifikanzniveau von 5% (was auch immer Ibrahimovic darunter verstehen mag). In welchem Bereich muss die Anzahl der Lattentreffer liegen, um den schwedischen Stürmer der Prahlerei zu überführen, also dass man eine irrtümliche Anzweiflung der Trefferquote rechnerisch abschätzen kann?Berechne dann diese Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
410.0003
420.001
430.003
440.0084
450.0214
460.0494
470.103
480.1934
490.3262
500.4935
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.9 zu verwerfen. Der Test soll bestätigen, dass p<0.9 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(56,0.9,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 46 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.9 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.9 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0494 =4.94% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;46]

Nicht-Ablehnungsbereich von H0: [47;56]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;46], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [47;56], so muss die Nullhypothese beibehalten werden.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen seine bisherige Trefferwahrscheinlichkeit von p=0,15 inzwischen verbessert. Sein Trainer glaubt ihm sich das nicht. Um seine Verbesserung zu überprüfen, wird ein Signifikanz-Test mit 89 Würfen des Basketballspieler vereinbart. Dabei soll die Irrtumswahrscheinlichkeit berechnet werden können, dass man aufgrund des Test eine höhere Treffer-Quote annimmt, obwohl dies in Wirklichkeit gar nicht der Fall ist. In welchem Intervall müssen die Treffer liegen, damit sich der Spieler auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
140.645
150.745
160.8266
170.8884
180.9321
190.9609
200.9787
210.989
220.9946
230.9975
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.15 zu verwerfen. Der Test soll bestätigen, dass p>0.15 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(89,0.15,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 19 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;19]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 20 Treffern beginnt.

Ablehnungsbereich von H0: [20;89]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.15 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.15 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0391 =3.91% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [20;89], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;19], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikaments unter p=0,8 gesunken ist. Um dies nachzuweisen, soll ein Test mit 67 Probanden so durchgeführt werden, dass die Irrtumswahrscheinlichkeit maximal 1% beträgt, dass der Test auf eine niedrigere Nebenwirkungshäufigkeit hinweist, obwohl dies in Wirklichkeit nicht der Fall ist. In welchem Intervall muss hierfür die Anzahl der Probanden mit Nebenwirkungen liegen? Wie hoch ist dann diese Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
400.0001
410.0003
420.0008
430.0019
440.0043
450.0093
460.0188
470.0357
480.0639
490.1077
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.8 zu verwerfen. Der Test soll bestätigen, dass p<0.8 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(67,0.8,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 45 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.8 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.8 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0093 =0.93% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;45]

Nicht-Ablehnungsbereich von H0: [46;67]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;45], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [46;67], so muss die Nullhypothese beibehalten werden.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,11 gesunken ist. Um dies nachzuweisen, soll ein 55-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,06. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00.0016
10.0128
20.0502
30.1317
40.2627
50.4279
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.11 zu verwerfen. Der Test soll bestätigen, dass p<0.11 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(55,0.11,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.11 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.11 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0128 =1.28% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1]

Nicht-Ablehnungsbereich von H0: [2;55]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;1], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [2;55], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.11 falsch, weil ja in Wirklichkeit p=0.06 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 2 bis 55, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.06) beträgt nun: P0.0655 (X2) =1- P0.0655 (X1) ≈ 1-0.1501 ≈ 0.8499

Mit 84.99% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= 1 37 wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 220 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= 1 37 statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0024
10.0171
20.062
30.1524
40.2887
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 37 zu verwerfen. Der Test soll bestätigen, dass p< 1 37 oder p> 1 37 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=220 und p= 1 37 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
90.9225
100.9618
110.9826
120.9926
130.9971
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=11 erstmals P 1 37 220 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 12 bis 220 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 12 bis 220.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 37 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 37 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 37 220 (X1) = 0.0171 auf der linken Seite und P 1 37 220 (X12) = 1-0.9826 = 0.0174 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0171 + 0.0174 = 0.0346 =3.46% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1] und [12;220]

Nicht-Ablehnungsbereich von H0: [2;11]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;1] oder [12;220], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [2;11], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 45% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung, einen Hypothesentest in Form einer Befragung von 800 Kunden durchzuführen. Dabei soll das Risiko auf 18% begrenzt werden, dass aufgrund des Tests die App gar nicht entwickelt wird, obwohl diese wirtschaftlich sinnvoll gewesen wäre.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 45%

error

Wenn die Nullhypothese H0: " ... höchstens 45%", also p ≤ 0.45 lautet, soll ja der Test "bestätigen", dass p > 0.45 ist - also ist es ein rechtsseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 18% sein muss, falls die Nullhypothese H0: p ≤ 0.45 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.45 abzulehnen, obwohl es stimmt, ist somit kleiner als 18%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.45 irrtümlicherweise abzulehnen, damit p > 0.45 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 18% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 18%

error

Die Nullhypothese H0: " ... mindestens 18%", also p ≥ 0.18 macht keinen Sinn, weil die 18%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=45% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

3. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 18%

error

Die Nullhypothese H0: " ... höchstens 18%", also p ≤ 0.18 macht keinen Sinn, weil die 18%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=45% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

4. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 45%

ok

Wenn die Nullhypothese H0: " ... mindestens 45%", also p ≥ 0.45 lautet, soll ja der Test "bestätigen", dass p < 0.45 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 18% sein muss, falls die Nullhypothese H0: p ≥ 0.45 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.45 abzulehnen, obwohl es stimmt, ist somit kleiner als 18%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.45 irrtümlicherweise abzulehnen, damit p < 0.45 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 18% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374