nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hypothesen-Test linksseitig

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 100 Würfen und einem Signifikanzniveau von 1%. In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann (- also, dass das Risiko, die 6er-Wahrscheinlichkeit irrtümlicherweise als zu gering anzunehmen, berechenbar ist.) Wie hoch ist dann diese Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
30
40.0001
50.0004
60.0013
70.0038
80.0095
90.0213
100.0427
110.0777
120.1297
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(100, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 8 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0095 =0.95% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;8]

Nicht-Ablehnungsbereich von H0: [9;100]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;8], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [9;100], so muss die Nullhypothese beibehalten werden.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Altpapierbehälter zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 46 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 5% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer statistisch belegt zu triumphieren zu können? Wie hoch ist dann die Irrtumswahrscheinlichkeit, dass die Trefferqutoe von höchstens 10% fälschlicherweise abgelehnt wurde?

Lösung einblenden
kP(X≤k)
......
30.3119
40.5073
50.6897
60.8281
70.916
80.9636
90.986
100.9952
110.9985
120.9996
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(46,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 8 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;8]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 9 Treffern beginnt.

Ablehnungsbereich von H0: [9;46]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0364 =3.64% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [9;46], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;8], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Altpapierbehälter zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 48 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 1% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer statistisch belegt zu triumphieren zu können? Wie hoch ist dann die Irrtumswahrscheinlichkeit, dass die Trefferqutoe von höchstens 10% fälschlicherweise abgelehnt wurde?

Lösung einblenden
kP(X≤k)
......
50.6531
60.8
70.8979
80.9537
90.9813
100.9932
110.9978
120.9993
130.9998
141
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.01= 0.99 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(48,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 10 erstmals mindestens 99% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;10]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 11 Treffern beginnt.

Ablehnungsbereich von H0: [11;48]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0068 =0.68% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [11;48], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;10], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 89 Würfen und einem Signifikanzniveau von 1%. a) In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann. b) In Wirklichkeit ist der Würfel tatsächlich manipuliert und würfelt nur mit der Wahrscheinlichkeit von 11% eine sechs. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Sechsen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
......
10
20
30.0001
40.0004
50.0016
60.005
70.0129
80.0291
90.0583
100.105
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(89, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 6 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.005 =0.5% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;6]

Nicht-Ablehnungsbereich von H0: [7;89]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;6], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [7;89], so muss die Nullhypothese beibehalten werden.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p= 1 6 falsch, weil ja in Wirklichkeit p=0.11 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 7 bis 89, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.11) beträgt nun: P0.1189 (X7) =1- P0.1189 (X6) ≈ 1-0.1291 ≈ 0.8709

Mit 87.09% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= 1 37 wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 140 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= 1 37 statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0216
10.1055
20.2676
30.4746
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 37 zu verwerfen. Der Test soll bestätigen, dass p< 1 37 oder p> 1 37 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=140 und p= 1 37 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 0 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
60.9134
70.9629
80.9857
90.995
100.9984
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=8 erstmals P 1 37 140 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 9 bis 140 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 9 bis 140.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 37 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 37 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 37 140 (X0) = 0.0216 auf der linken Seite und P 1 37 140 (X9) = 1-0.9857 = 0.0143 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0216 + 0.0143 = 0.0358 =3.58% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;0] und [9;140]

Nicht-Ablehnungsbereich von H0: [1;8]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;0] oder [9;140], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [1;8], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Eine Firma möchte den Preis für ihr umsatzstärkstes Produkt erhöhen. Die Marketingabteilung geht davon aus, dass dadurch 3% der Kunden zu einem Mitbewerberprodukt wechseln und somit der Umsatz so stark zurückgehen würde, dass sich die Preiserhöhung gar nicht lohnt. Die Geschäftsführung ist sich aber nicht ganz sicher, ob diese Zahl verlässlich ist und beschließt, einen Hypothesentest mit 100 Personen durchzuführen, die befragt werden, ob sie bei der Preiserhöhung zu einem anderen Produkt wechseln würden. Dabei möchte sie das Risiko auf 8% begrenzen, dass aufgrund des Tests irrtümlicherweise die Preiserhöhung vollzogen wird und somit ein starker Umsatzeinbruch eintritt.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt mindestens 8%

error

Die Nullhypothese H0: " ... mindestens 8%", also p ≥ 0.08 macht keinen Sinn, weil die 8%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=3% gehen, also wieviel Prozent bei einer Preiserhöhung zu einem Mitbewerberprodukt wechseln.

2. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt höchstens 3%

error

Wenn die Nullhypothese H0: " ... höchstens 3%", also p ≤ 0.03 lautet, soll ja der Test "bestätigen", dass p > 0.03 ist - also ist es ein rechtsseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 8% sein muss, falls die Nullhypothese H0: p ≤ 0.03 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.03 abzulehnen, obwohl es stimmt, ist somit kleiner als 8%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.03 irrtümlicherweise abzulehnen, damit p > 0.03 anzunehmen (obwohl dies falsch ist), und somit auf die Preiserhöhung zu verzichten (obwohl diese sinnvoll wäre), auf unter 8% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

0
1
2
3
4
5
6
7
8
9
10
11
12
13

3. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt mindestens 3%

ok

Wenn die Nullhypothese H0: " ... mindestens 3%", also p ≥ 0.03 lautet, soll ja der Test "bestätigen", dass p < 0.03 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 8% sein muss, falls die Nullhypothese H0: p ≥ 0.03 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.03 abzulehnen, obwohl es stimmt, ist somit kleiner als 8%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.03 irrtümlicherweise abzulehnen, damit p < 0.03 anzunehmen (obwohl dies falsch ist), und somit die Preiserhöhung durchzuführen und einen Umsatzeinbruch zu riskieren, auf unter 8% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

0
1
2
3
4
5
6
7
8
9
10
11
12
13

4. Der Anteil der Kunden, die zu einem Mitbewerberprodukt wechseln, beträgt höchstens 8%

error

Die Nullhypothese H0: " ... höchstens 8%", also p ≤ 0.08 macht keinen Sinn, weil die 8%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=3% gehen, also wieviel Prozent bei einer Preiserhöhung zu einem Mitbewerberprodukt wechseln.