nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 40 + 440

Lösung einblenden
Die korrekte Antwort lautet:
40 + 440 = 480

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 5733 + 1330 + 57581 + 14325

Lösung einblenden
Die korrekte Antwort lautet:
5733 + 1330 + 57581 + 14325 = 78969

Schriftliche Rechnung:
5 7 3 3
+ 1 3 3 0
+ 5 7 5 8 1
+ 1 4 3 2 5
1 1 1
78969

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 407 - 160

Lösung einblenden
Die korrekte Antwort lautet:
407 - 160 = 247

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 129038 - 40610 - 76029

Lösung einblenden
Die korrekte Antwort lautet:
129038 - 40610 - 76029 = 12399

Schriftliche Rechnung:
129038
- 4 0 6 1 0
- 7 6 0 2 9
1 1 1 1
12399

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 3 ⋅ 8

Lösung einblenden
Die korrekte Antwort lautet:
3 ⋅ 8 = 24

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 957 ⋅ 124

Lösung einblenden
Die korrekte Antwort lautet:
957 ⋅ 124 = 118668

Schriftliche Rechnung:

957124
957
1914
3828
1 1 1
118668

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 105 : 7

Lösung einblenden
Die korrekte Antwort lautet:
105 : 7 = 15

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 1510 : 5

Lösung einblenden
Die korrekte Antwort lautet:
1510 : 5 = 302

Schriftliche Rechnung:

1510:5=302
- 1 5
01
- 0
10
- 1 0
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 2, 3, 6, 8, 4, 7 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:

8, 7, 6, 4, 3, 2

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
863 + 742 = 1605

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
12 ⋅ ⬜ = 36

Lösung einblenden

12 ⋅ ⬜ = 36

Wenn man das Kästchen mit 12 multipliziert, erhält man 36. Also muss man doch das Kästchen erhalten, wenn man 36 durch 12 dividiert.

Somit gilt:
⬜ = 36 : 12 = 3

Das Kästchen muss also 3 sein, denn es gilt: 12 ⋅ 3 = 36

Rückwärtsrechnen verbal

Beispiel:

Welche Zahl muss man durch 2 dividieren, um 16 zu erhalten?

Lösung einblenden

"Welche Zahl muss man durch 2 dividieren, um 16 zu erhalten?" bedeutet ja:

⬜ : 2 = 16

Wenn man das Kästchen durch 2 teilt, erhält man 16. Also muss doch das Kästchen das 2-fache von 16 sein.

Somit gilt:
⬜ = 16 ⋅ 2 = 32

Das Kästchen muss also 32 sein, denn es gilt: 32 : 2 = 16

Anwendungen

Beispiel:

Fred geht einkaufen. Dabei kauft er 5 Packungen Chips à 2€, 2 Schalen Erdbeeren à 2€, 2 Flaschen Mineralwasser à 1€ und 2 Becher veganen Yoghurt à 2€. Er bezahlt mit einem 50-€ Schein. Wie viel bekommt er wieder raus?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

5⋅ 2 € + 2⋅ 2 € + 2⋅ 1 € + 2⋅ 2 €
= 10 € + 4 € + 2 € + 4 €
= 20 €

Jetzt müssen wir diese Summe von 50 € abziehen: 50 € - 20 € = 30 €

Das Wechselgeld ist also 30 €