nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +5 ) 2 · ( x -2 ) = 0

Lösung einblenden
x ( x +5 ) 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +5 ) 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +5 ) 2 = 0 | 2
x +5 = 0
x +5 = 0 | -5
x2 = -5

2. Fall:

x -2 = 0 | +2
x3 = 2

L={ -5 ; 0; 2 }

-5 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 2 - x = 0

Lösung einblenden
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 -36 = 0

Lösung einblenden
x 4 -5 x 2 -36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -36 ) 21

u1,2 = +5 ± 25 +144 2

u1,2 = +5 ± 169 2

u1 = 5 + 169 2 = 5 +13 2 = 18 2 = 9

u2 = 5 - 169 2 = 5 -13 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -36 ) = 25 4 + 36 = 25 4 + 144 4 = 169 4

x1,2 = 5 2 ± 169 4

x1 = 5 2 - 13 2 = - 8 2 = -4

x2 = 5 2 + 13 2 = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -4

x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -5 x 4 = - x 6

Lösung einblenden
4 x 2 -5 x 4 = - x 6
-5 x 4 +4 x 2 = - x 6 | + x 6
x 6 -5 x 4 +4 x 2 = 0
x 2 ( x 4 -5 x 2 +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -5 x 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = 1

x 2 = 1 | 2
x4 = - 1 = -1
x5 = 1 = 1

L={ -2 ; -1 ; 0; 1 ; 2 }

0 ist 2-fache Lösung!

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

5 x 2 +4 +21x = 0

Lösung einblenden

5 x 2 +21x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -21 ± 21 2 -4 · 5 · 4 25

x1,2 = -21 ± 441 -80 10

x1,2 = -21 ± 361 10

x1 = -21 + 361 10 = -21 +19 10 = -2 10 = -0,2

x2 = -21 - 361 10 = -21 -19 10 = -40 10 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +21x +4 = 0 |: 5

x 2 + 21 5 x + 4 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 21 10 ) 2 - ( 4 5 ) = 441 100 - 4 5 = 441 100 - 80 100 = 361 100

x1,2 = - 21 10 ± 361 100

x1 = - 21 10 - 19 10 = - 40 10 = -4

x2 = - 21 10 + 19 10 = - 2 10 = -0.2

L={ -4 ; -0,2 }