nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -4 ) · ( x -1 ) = 0

Lösung einblenden
x ( x -4 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -4 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -4 = 0 | +4
x2 = 4

2. Fall:

x -1 = 0 | +1
x3 = 1

L={0; 1 ; 4 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 -8 x 3 = 0

Lösung einblenden
x 6 -8 x 3 = 0
x 3 ( x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -8 = 0 | +8
x 3 = 8 | 3
x2 = 8 3 = 2

L={0; 2 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 - x 2 -12 = 0

Lösung einblenden
x 4 - x 2 -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 - u -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

u1,2 = +1 ± 1 +48 2

u1,2 = +1 ± 49 2

u1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

u2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

- 5 x 2 +4 = - x 2

Lösung einblenden

D=R\{0}

4 - 5 x 2 = - x 2

Wir multiplizieren den Nenner x 2 weg!

4 - 5 x 2 = - x 2 |⋅( x 2 )
4 · x 2 - 5 x 2 · x 2 = - x 2 · x 2
4 x 2 -5 = - x 2 · x 2
4 x 2 -5 = - x 4
4 x 2 -5 = - x 4 | + x 4
x 4 +4 x 2 -5 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +4u -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · ( -5 ) 21

u1,2 = -4 ± 16 +20 2

u1,2 = -4 ± 36 2

u1 = -4 + 36 2 = -4 +6 2 = 2 2 = 1

u2 = -4 - 36 2 = -4 -6 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -5 ) = 4+ 5 = 9

x1,2 = -2 ± 9

x1 = -2 - 3 = -5

x2 = -2 + 3 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -5

x 2 = -5 | 2

Diese Gleichung hat keine (reele) Lösung!

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 1 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-56 +33x +5 x 2 = 0

Lösung einblenden

5 x 2 +33x -56 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -33 ± 33 2 -4 · 5 · ( -56 ) 25

x1,2 = -33 ± 1089 +1120 10

x1,2 = -33 ± 2209 10

x1 = -33 + 2209 10 = -33 +47 10 = 14 10 = 1,4

x2 = -33 - 2209 10 = -33 -47 10 = -80 10 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +33x -56 = 0 |: 5

x 2 + 33 5 x - 56 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 33 10 ) 2 - ( - 56 5 ) = 1089 100 + 56 5 = 1089 100 + 1120 100 = 2209 100

x1,2 = - 33 10 ± 2209 100

x1 = - 33 10 - 47 10 = - 80 10 = -8

x2 = - 33 10 + 47 10 = 14 10 = 1.4

L={ -8 ; 1,4 }