- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Polynomgleichungen (Nullprodukt)
Beispiel:
Löse die folgende Gleichung:
=
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
= | | | ||
|
= |
|
= | |
|
|
x2 | = |
|
2. Fall:
|
= | |
|
|
x3 | = |
|
L={
Polynomgleichungen (Ausklammern)
Beispiel:
Löse die folgende Gleichung:
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
x1 | = |
2. Fall:
|
= | |
|
|
x2 | = |
|
L={
Polynomgleichungen (Substitution)
Beispiel:
Löse die folgende Gleichung:
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
= | |
|
|
x1 | = |
|
=
|
x2 | = |
|
=
|
u2:
|
= | |
|
|
x3 | = |
|
=
|
x4 | = |
|
=
|
L={
Polynomgleichungen (Substitution II)
Beispiel:
Löse die folgende Gleichung:
|
= |
|
|
|
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
x1 | = |
2. Fall:
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
= | |
|
|
x2 | = |
|
=
|
x3 | = |
|
=
|
u2:
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={