nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -4 ) · ( x +3 ) = 0

Lösung einblenden
x ( x -4 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -4 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -4 = 0 | +4
x2 = 4

2. Fall:

x +3 = 0 | -3
x3 = -3

L={ -3 ; 0; 4 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 3 - x = 0

Lösung einblenden
x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

L={ -1 ; 0; 1 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -13 x 2 +36 = 0

Lösung einblenden
x 4 -13 x 2 +36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -13u +36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +13 ± ( -13 ) 2 -4 · 1 · 36 21

u1,2 = +13 ± 169 -144 2

u1,2 = +13 ± 25 2

u1 = 13 + 25 2 = 13 +5 2 = 18 2 = 9

u2 = 13 - 25 2 = 13 -5 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 2 ) 2 - 36 = 169 4 - 36 = 169 4 - 144 4 = 25 4

x1,2 = 13 2 ± 25 4

x1 = 13 2 - 5 2 = 8 2 = 4

x2 = 13 2 + 5 2 = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = 4

x 2 = 4 | 2
x3 = - 4 = -2
x4 = 4 = 2

L={ -3 ; -2 ; 2 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

-8 x 3 + x 5 = -16x

Lösung einblenden
-8 x 3 + x 5 = -16x
x 5 -8 x 3 = -16x | +16x
x 5 -8 x 3 +16x = 0
x ( x 4 -8 x 2 +16 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 4 -8 x 2 +16 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -8u +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · 16 21

u1,2 = +8 ± 64 -64 2

u1,2 = +8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 4 ± 0 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = 4

x 2 = 4 | 2
x4 = - 4 = -2
x5 = 4 = 2

L={ -2 ; 0; 2 }

-2 ist 2-fache Lösung! 2 ist 2-fache Lösung!

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

10 +4 x 2 = 14x

Lösung einblenden
4 x 2 +10 = 14x | -14x
4 x 2 -14x +10 = 0 |:2

2 x 2 -7x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 2 · 5 22

x1,2 = +7 ± 49 -40 4

x1,2 = +7 ± 9 4

x1 = 7 + 9 4 = 7 +3 4 = 10 4 = 2,5

x2 = 7 - 9 4 = 7 -3 4 = 4 4 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -7x +5 = 0 |: 2

x 2 - 7 2 x + 5 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 4 ) 2 - ( 5 2 ) = 49 16 - 5 2 = 49 16 - 40 16 = 9 16

x1,2 = 7 4 ± 9 16

x1 = 7 4 - 3 4 = 4 4 = 1

x2 = 7 4 + 3 4 = 10 4 = 2.5

L={ 1 ; 2,5 }