nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -5 ) · ( x +5 ) = 0

Lösung einblenden
x ( x -5 ) ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -5 ) ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -5 = 0 | +5
x2 = 5

2. Fall:

x +5 = 0 | -5
x3 = -5

L={ -5 ; 0; 5 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 -4 x 3 = 0

Lösung einblenden
x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -1 = 0

Lösung einblenden
x 4 -1 = 0 | +1
x 4 = 1 | 4
x1 = - 1 4 = -1
x2 = 1 4 = 1

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 6 -3 x 2 = -2 x 4

Lösung einblenden
x 6 -3 x 2 = -2 x 4 | +2 x 4
x 6 +2 x 4 -3 x 2 = 0
x 2 ( x 4 +2 x 2 -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 +2 x 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 0; 1 }

0 ist 2-fache Lösung!

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2 x 2 +3 +5x = 0

Lösung einblenden

2 x 2 +5x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 2 · 3 22

x1,2 = -5 ± 25 -24 4

x1,2 = -5 ± 1 4

x1 = -5 + 1 4 = -5 +1 4 = -4 4 = -1

x2 = -5 - 1 4 = -5 -1 4 = -6 4 = -1,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +5x +3 = 0 |: 2

x 2 + 5 2 x + 3 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 4 ) 2 - ( 3 2 ) = 25 16 - 3 2 = 25 16 - 24 16 = 1 16

x1,2 = - 5 4 ± 1 16

x1 = - 5 4 - 1 4 = - 6 4 = -1.5

x2 = - 5 4 + 1 4 = - 4 4 = -1

L={ -1,5 ; -1 }