nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) · ( x +3 ) 2 = 0

Lösung einblenden
x ( x +2 ) ( x +3 ) 2 = 0
x ( x +3 ) 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +3 ) 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +3 ) 2 = 0 | 2
x +3 = 0
x +3 = 0 | -3
x2 = -3

2. Fall:

x +2 = 0 | -2
x3 = -2

L={ -3 ; -2 ; 0}

-3 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 -2 x 3 = 0

Lösung einblenden
x 4 -2 x 3 = 0
x 3 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -10 x 2 +9 = 0

Lösung einblenden
x 4 -10 x 2 +9 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -10u +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +10 ± ( -10 ) 2 -4 · 1 · 9 21

u1,2 = +10 ± 100 -36 2

u1,2 = +10 ± 64 2

u1 = 10 + 64 2 = 10 +8 2 = 18 2 = 9

u2 = 10 - 64 2 = 10 -8 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = 1

x 2 = 1 | 2
x3 = - 1 = -1
x4 = 1 = 1

L={ -3 ; -1 ; 1 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

-2 x 4 -8 x 2 = - x 6

Lösung einblenden
-2 x 4 -8 x 2 = - x 6 | + x 6
x 6 -2 x 4 -8 x 2 = 0
x 2 ( x 4 -2 x 2 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -2 x 2 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = -2

x 2 = -2 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 0; 2 }

0 ist 2-fache Lösung!