nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

( x +3 ) · ( x -2 ) = 0

Lösung einblenden
( x +3 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x -2 = 0 | +2
x2 = 2

L={ -3 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 - x 3 = 0

Lösung einblenden
x 4 - x 3 = 0
x 3 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -1 = 0

Lösung einblenden
x 4 -1 = 0 | +1
x 4 = 1 | 4
x1 = - 1 4 = -1
x2 = 1 4 = 1

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 4 +7x = 8 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

x 4 +7x = 8 x 2 |⋅( x 2 )
x 4 · x 2 + 7x · x 2 = 8 x 2 · x 2
x 4 · x 2 +7 x · x 2 = 8
x 6 +7 x 3 = 8
x 6 +7 x 3 = 8 | -8
x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x1 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x2 = - 8 3 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 1 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

100 +2 x 2 = -30x

Lösung einblenden
2 x 2 +100 = -30x | +30x
2 x 2 +30x +100 = 0 |:2

x 2 +15x +50 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -15 ± 15 2 -4 · 1 · 50 21

x1,2 = -15 ± 225 -200 2

x1,2 = -15 ± 25 2

x1 = -15 + 25 2 = -15 +5 2 = -10 2 = -5

x2 = -15 - 25 2 = -15 -5 2 = -20 2 = -10

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 15 2 ) 2 - 50 = 225 4 - 50 = 225 4 - 200 4 = 25 4

x1,2 = - 15 2 ± 25 4

x1 = - 15 2 - 5 2 = - 20 2 = -10

x2 = - 15 2 + 5 2 = - 10 2 = -5

L={ -10 ; -5 }