nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

( x -5 ) · ( x -5 ) 2 = 0

Lösung einblenden
( x -5 ) ( x -5 ) 2 = 0
( x -5 ) 3 = 0 | 3
x -5 = 0
x -5 = 0 | +5
x = 5

L={ 5 }

5 ist 3-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 2 + x = 0

Lösung einblenden
x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

L={ -1 ; 0}

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 -36 = 0

Lösung einblenden
x 4 -5 x 2 -36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -36 ) 21

u1,2 = +5 ± 25 +144 2

u1,2 = +5 ± 169 2

u1 = 5 + 169 2 = 5 +13 2 = 18 2 = 9

u2 = 5 - 169 2 = 5 -13 2 = -8 2 = -4

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -4

x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

8 -9 x 3 = - x 6

Lösung einblenden
8 -9 x 3 = - x 6 | + x 6
x 6 -9 x 3 +8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 8 21

u1,2 = +9 ± 81 -32 2

u1,2 = +9 ± 49 2

u1 = 9 + 49 2 = 9 +7 2 = 16 2 = 8

u2 = 9 - 49 2 = 9 -7 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

L={ 1 ; 2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

25 -20x = -4 x 2

Lösung einblenden
-20x +25 = -4 x 2 | +4 x 2

4 x 2 -20x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +20 ± ( -20 ) 2 -4 · 4 · 25 24

x1,2 = +20 ± 400 -400 8

x1,2 = +20 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 8 = 5 2

L={ 5 2 }

5 2 ist 2-fache Lösung!