nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) 2 · ( x +5 ) = 0

Lösung einblenden
x ( x +2 ) 2 ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +2 ) 2 ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +2 ) 2 = 0 | 2
x +2 = 0
x +2 = 0 | -2
x2 = -2

2. Fall:

x +5 = 0 | -5
x3 = -5

L={ -5 ; -2 ; 0}

-2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 +2 x 3 = 0

Lösung einblenden
x 4 +2 x 3 = 0
x 3 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 +4 = 0

Lösung einblenden
x 4 -5 x 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = 1

x 2 = 1 | 2
x3 = - 1 = -1
x4 = 1 = 1

L={ -2 ; -1 ; 1 ; 2 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

-3 x 3 + x 5 = 54x

Lösung einblenden
-3 x 3 + x 5 = 54x
x 5 -3 x 3 = 54x | -54x
x 5 -3 x 3 -54x = 0
x ( x 4 -3 x 2 -54 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 4 -3 x 2 -54 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -54 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -54 ) 21

u1,2 = +3 ± 9 +216 2

u1,2 = +3 ± 225 2

u1 = 3 + 225 2 = 3 +15 2 = 18 2 = 9

u2 = 3 - 225 2 = 3 -15 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -54 ) = 9 4 + 54 = 9 4 + 216 4 = 225 4

x1,2 = 3 2 ± 225 4

x1 = 3 2 - 15 2 = - 12 2 = -6

x2 = 3 2 + 15 2 = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x2 = - 9 = -3
x3 = 9 = 3

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 0; 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2 x 2 -5x = 63

Lösung einblenden
2 x 2 -5x = 63 | -63

2 x 2 -5x -63 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 2 · ( -63 ) 22

x1,2 = +5 ± 25 +504 4

x1,2 = +5 ± 529 4

x1 = 5 + 529 4 = 5 +23 4 = 28 4 = 7

x2 = 5 - 529 4 = 5 -23 4 = -18 4 = -4,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -5x -63 = 0 |: 2

x 2 - 5 2 x - 63 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 4 ) 2 - ( - 63 2 ) = 25 16 + 63 2 = 25 16 + 504 16 = 529 16

x1,2 = 5 4 ± 529 16

x1 = 5 4 - 23 4 = - 18 4 = -4.5

x2 = 5 4 + 23 4 = 28 4 = 7

L={ -4,5 ; 7 }