nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -3 ) 2 · ( x -3 ) = 0

Lösung einblenden
x ( x -3 ) 2 ( x -3 ) = 0
x ( x -3 ) 3 = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -3 ) 3 = 0 | 3
x -3 = 0
x -3 = 0 | +3
x2 = 3

L={0; 3 }

3 ist 3-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 -8 x 3 = 0

Lösung einblenden
x 6 -8 x 3 = 0
x 3 ( x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -8 = 0 | +8
x 3 = 8 | 3
x2 = 8 3 = 2

L={0; 2 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -6 x 2 -27 = 0

Lösung einblenden
x 4 -6 x 2 -27 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -6u -27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +6 ± ( -6 ) 2 -4 · 1 · ( -27 ) 21

u1,2 = +6 ± 36 +108 2

u1,2 = +6 ± 144 2

u1 = 6 + 144 2 = 6 +12 2 = 18 2 = 9

u2 = 6 - 144 2 = 6 -12 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -27 ) = 9+ 27 = 36

x1,2 = 3 ± 36

x1 = 3 - 6 = -3

x2 = 3 + 6 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 6 +64 = -16 x 3

Lösung einblenden
x 6 +64 = -16 x 3 | +16 x 3
x 6 +16 x 3 +64 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +16u +64 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -16 ± 16 2 -4 · 1 · 64 21

u1,2 = -16 ± 256 -256 2

u1,2 = -16 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 64 = 64 - 64 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -8 ± 0 = -8

Rücksubstitution:

u1: x 3 = -8

x 3 = -8 | 3
x1 = - 8 3 = -2

u2: x 3 = -8

x 3 = -8 | 3
x2 = - 8 3 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 +8 x 3 = 0

Lösung einblenden
x 6 +8 x 3 = 0
x 3 ( x 3 +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 +8 = 0 | -8
x 3 = -8 | 3
x2 = - 8 3 = -2

L={ -2 ; 0}

0 ist 3-fache Lösung!