nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -2 ) 2 · ( x +3 ) 2 = 0

Lösung einblenden
x ( x -2 ) 2 ( x +3 ) 2 = 0
x ( ( x -2 ) ( x +3 ) ) 2 = 0
( ( x -2 ) ( x +3 ) ) 2 x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( ( x -2 ) ( x +3 ) ) 2 = 0 | 2
( x -2 ) ( x +3 ) = 0
( x -2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x +3 = 0 | -3
x2 = -3

2. Fall:

x3 = 0

L={ -3 ; 0; 2 }

-3 ist 2-fache Lösung! 2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 +8 x 3 = 0

Lösung einblenden
x 6 +8 x 3 = 0
x 3 ( x 3 +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 +8 = 0 | -8
x 3 = -8 | 3
x2 = - 8 3 = -2

L={ -2 ; 0}

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -8 x 2 -9 = 0

Lösung einblenden
x 4 -8 x 2 -9 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -8u -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · ( -9 ) 21

u1,2 = +8 ± 64 +36 2

u1,2 = +8 ± 100 2

u1 = 8 + 100 2 = 8 +10 2 = 18 2 = 9

u2 = 8 - 100 2 = 8 -10 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - ( -9 ) = 16+ 9 = 25

x1,2 = 4 ± 25

x1 = 4 - 5 = -1

x2 = 4 + 5 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -1

x 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

7x - 8 x 2 = - x 4

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

7x - 8 x 2 = - x 4 |⋅( x 2 )
7x · x 2 - 8 x 2 · x 2 = - x 4 · x 2
7 x · x 2 -8 = - x 4 · x 2
7 x 3 -8 = - x 4 · x 2
7 x 3 -8 = - x 6
7 x 3 -8 = - x 6 | + x 6
x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x1 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x2 = - 8 3 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 1 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 - x 3 = 0

Lösung einblenden
x 6 - x 3 = 0
x 3 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

L={0; 1 }

0 ist 3-fache Lösung!