nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

( x +2 ) 2 · ( x +4 ) = 0

Lösung einblenden
( x +2 ) 2 ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +2 ) 2 = 0 | 2
x +2 = 0
x +2 = 0 | -2
x1 = -2

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; -2 }

-2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 + x 2 = 0

Lösung einblenden
x 5 + x 2 = 0
x 2 ( x 3 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 3 +1 = 0 | -1
x 3 = -1 | 3
x2 = - 1 3 = -1

L={ -1 ; 0}

0 ist 2-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +5 x 2 -6 = 0

Lösung einblenden
x 4 +5 x 2 -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = - 5 2 ± 49 4

x1 = - 5 2 - 7 2 = - 12 2 = -6

x2 = - 5 2 + 7 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

-9 x 2 + x 6 = 8 x 4

Lösung einblenden
-9 x 2 + x 6 = 8 x 4
x 6 -9 x 2 = 8 x 4 | -8 x 4
x 6 -8 x 4 -9 x 2 = 0
x 2 ( x 4 -8 x 2 -9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -8 x 2 -9 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -8u -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · ( -9 ) 21

u1,2 = +8 ± 64 +36 2

u1,2 = +8 ± 100 2

u1 = 8 + 100 2 = 8 +10 2 = 18 2 = 9

u2 = 8 - 100 2 = 8 -10 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - ( -9 ) = 16+ 9 = 25

x1,2 = 4 ± 25

x1 = 4 - 5 = -1

x2 = 4 + 5 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x2 = - 9 = -3
x3 = 9 = 3

u2: x 2 = -1

x 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 0; 3 }

0 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 -4 x 3 = 0

Lösung einblenden
x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

0 ist 3-fache Lösung!