nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) · ( x -5 ) = 0

Lösung einblenden
x ( x +2 ) ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +2 ) ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x2 = -2

2. Fall:

x -5 = 0 | +5
x3 = 5

L={ -2 ; 0; 5 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 - x = 0

Lösung einblenden
x 4 - x = 0
x ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

L={0; 1 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 + x 2 -20 = 0

Lösung einblenden
x 4 + x 2 -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 + u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

u1,2 = -1 ± 1 +80 2

u1,2 = -1 ± 81 2

u1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

u2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -5

x 2 = -5 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 6 -8 = -7 x 3

Lösung einblenden
x 6 -8 = -7 x 3 | +7 x 3
x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x1 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x2 = - 8 3 = -2

L={ -2 ; 1 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-49 +2 x 2 = -7x

Lösung einblenden
2 x 2 -49 = -7x | +7x

2 x 2 +7x -49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 2 · ( -49 ) 22

x1,2 = -7 ± 49 +392 4

x1,2 = -7 ± 441 4

x1 = -7 + 441 4 = -7 +21 4 = 14 4 = 3,5

x2 = -7 - 441 4 = -7 -21 4 = -28 4 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +7x -49 = 0 |: 2

x 2 + 7 2 x - 49 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 4 ) 2 - ( - 49 2 ) = 49 16 + 49 2 = 49 16 + 392 16 = 441 16

x1,2 = - 7 4 ± 441 16

x1 = - 7 4 - 21 4 = - 28 4 = -7

x2 = - 7 4 + 21 4 = 14 4 = 3.5

L={ -7 ; 3,5 }