Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Polynomgleichungen (Nullprodukt)
Beispiel:
Löse die folgende Gleichung:
=
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x2 | = |
2. Fall:
| = | | | ||
| x3 | = |
L={
;
Polynomgleichungen (Ausklammern)
Beispiel:
Löse die folgende Gleichung:
=
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
|
|
= | |
|
|
| x2 | = |
|
L={
Polynomgleichungen (Substitution)
Beispiel:
Löse die folgende Gleichung:
|
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x1 | = |
|
=
|
| x2 | = |
|
=
|
u2:
|
|
= | |
|
|
| x3 | = |
|
=
|
| x4 | = |
|
=
|
L={
Polynomgleichungen (Substitution II)
Beispiel:
Löse die folgende Gleichung:
|
|
= |
|
|
|
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
u1,2 =
u1,2 =
u1,2 =
Da die Wurzel Null ist, gibt es nur eine Lösung:
u =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.
x =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x1 | = |
|
=
|
u2:
|
|
= | |
|
|
| x2 | = |
|
=
|
L={
a-b-c-Formel (MNF) - erst sortieren
Beispiel:
Löse die folgende Gleichung:
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
x1,2 =
x1,2 =
x1,2 =
x1 =
x2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die
ganze Gleichung durch "
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
L={
