nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) 2 · ( x +2 ) = 0

Lösung einblenden
x ( x +2 ) 2 ( x +2 ) = 0
x ( x +2 ) 3 = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +2 ) 3 = 0 | 3
x +2 = 0
x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

-2 ist 3-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 2 + x = 0

Lösung einblenden
x 2 + x = 0
x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

L={ -1 ; 0}

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -8 x 2 +16 = 0

Lösung einblenden
x 4 -8 x 2 +16 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -8u +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · 16 21

u1,2 = +8 ± 64 -64 2

u1,2 = +8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 4 ± 0 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = 4

x 2 = 4 | 2
x3 = - 4 = -2
x4 = 4 = 2

L={ -2 ; 2 }

-2 ist 2-fache Lösung! 2 ist 2-fache Lösung!

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

- 8 x 2 -7x = - x 4

Lösung einblenden

D=R\{0}

-7x - 8 x 2 = - x 4

Wir multiplizieren den Nenner x 2 weg!

-7x - 8 x 2 = - x 4 |⋅( x 2 )
-7x · x 2 - 8 x 2 · x 2 = - x 4 · x 2
-7 x · x 2 -8 = - x 4 · x 2
-7 x 3 -8 = - x 4 · x 2
-7 x 3 -8 = - x 6
-7 x 3 -8 = - x 6 | + x 6
x 6 -7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +7 ± 49 +32 2

u1,2 = +7 ± 81 2

u1 = 7 + 81 2 = 7 +9 2 = 16 2 = 8

u2 = 7 - 81 2 = 7 -9 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = 7 2 ± 81 4

x1 = 7 2 - 9 2 = - 2 2 = -1

x2 = 7 2 + 9 2 = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = -1

x 3 = -1 | 3
x2 = - 1 3 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 2 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-56 + x = - x 2

Lösung einblenden
x -56 = - x 2 | + x 2

x 2 + x -56 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -56 ) 21

x1,2 = -1 ± 1 +224 2

x1,2 = -1 ± 225 2

x1 = -1 + 225 2 = -1 +15 2 = 14 2 = 7

x2 = -1 - 225 2 = -1 -15 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -56 ) = 1 4 + 56 = 1 4 + 224 4 = 225 4

x1,2 = - 1 2 ± 225 4

x1 = - 1 2 - 15 2 = - 16 2 = -8

x2 = - 1 2 + 15 2 = 14 2 = 7

L={ -8 ; 7 }