nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) 2 · ( x -5 ) = 0

Lösung einblenden
x ( x +2 ) 2 ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x +2 ) 2 ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x +2 ) 2 = 0 | 2
x +2 = 0
x +2 = 0 | -2
x2 = -2

2. Fall:

x -5 = 0 | +5
x3 = 5

L={ -2 ; 0; 5 }

-2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 3 -4x = 0

Lösung einblenden
x 3 -4x = 0
x ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -8 x 2 -9 = 0

Lösung einblenden
x 4 -8 x 2 -9 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -8u -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · ( -9 ) 21

u1,2 = +8 ± 64 +36 2

u1,2 = +8 ± 100 2

u1 = 8 + 100 2 = 8 +10 2 = 18 2 = 9

u2 = 8 - 100 2 = 8 -10 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - ( -9 ) = 16+ 9 = 25

x1,2 = 4 ± 25

x1 = 4 - 5 = -1

x2 = 4 + 5 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -1

x 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

1 + x 6 = 2 x 3

Lösung einblenden
1 + x 6 = 2 x 3 | -2 x 3
x 6 -2 x 3 +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x1 = 1 3 = 1

u2: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

L={ 1 }

1 ist 2-fache Lösung!

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-12x +37 + x 2 = 0

Lösung einblenden

x 2 -12x +37 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 37 21

x1,2 = +12 ± 144 -148 2

x1,2 = +12 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 37 = 36 - 37 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}