nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

( x -2 ) · ( x +3 ) = 0

Lösung einblenden
( x -2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x +3 = 0 | -3
x2 = -3

L={ -3 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 -4 x 3 = 0

Lösung einblenden
x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +2 x 2 -3 = 0

Lösung einblenden
x 4 +2 x 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 4 + 8 x 2 = 9x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

x 4 + 8 x 2 = 9x |⋅( x 2 )
x 4 · x 2 + 8 x 2 · x 2 = 9x · x 2
x 4 · x 2 +8 = 9 x · x 2
x 6 +8 = 9 x · x 2
x 6 +8 = 9 x 3
x 6 +8 = 9 x 3 | -9 x 3
x 6 -9 x 3 +8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 8 21

u1,2 = +9 ± 81 -32 2

u1,2 = +9 ± 49 2

u1 = 9 + 49 2 = 9 +7 2 = 16 2 = 8

u2 = 9 - 49 2 = 9 -7 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 8 = 81 4 - 8 = 81 4 - 32 4 = 49 4

x1,2 = 9 2 ± 49 4

x1 = 9 2 - 7 2 = 2 2 = 1

x2 = 9 2 + 7 2 = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 3 - x = 0

Lösung einblenden
x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

L={ -1 ; 0; 1 }