nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -3 ) 2 · ( x +2 ) = 0

Lösung einblenden
x ( x -3 ) 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -3 ) 2 ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x -3 ) 2 = 0 | 2
x -3 = 0
x -3 = 0 | +3
x2 = 3

2. Fall:

x +2 = 0 | -2
x3 = -2

L={ -2 ; 0; 3 }

3 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 -8 x 2 = 0

Lösung einblenden
x 5 -8 x 2 = 0
x 2 ( x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 3 -8 = 0 | +8
x 3 = 8 | 3
x2 = 8 3 = 2

L={0; 2 }

0 ist 2-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +5 x 2 -6 = 0

Lösung einblenden
x 4 +5 x 2 -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = - 5 2 ± 49 4

x1 = - 5 2 - 7 2 = - 12 2 = -6

x2 = - 5 2 + 7 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

-8x + x 7 = -7 x 4

Lösung einblenden
-8x + x 7 = -7 x 4
x 7 -8x = -7 x 4 | +7 x 4
x 7 +7 x 4 -8x = 0
x ( x 6 +7 x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x3 = - 8 3 = -2

L={ -2 ; 0; 1 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 -4 x 3 = 0

Lösung einblenden
x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

0 ist 3-fache Lösung!