nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x +2 ) 2 · ( x +3 ) 2 = 0

Lösung einblenden
x ( x +2 ) 2 ( x +3 ) 2 = 0
x ( ( x +2 ) ( x +3 ) ) 2 = 0
( ( x +2 ) ( x +3 ) ) 2 x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( ( x +2 ) ( x +3 ) ) 2 = 0 | 2
( x +2 ) ( x +3 ) = 0
( x +2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x +3 = 0 | -3
x2 = -3

2. Fall:

x3 = 0

L={ -3 ; -2 ; 0}

-3 ist 2-fache Lösung! -2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 -4 x 2 = 0

Lösung einblenden
x 4 -4 x 2 = 0
x 2 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

L={ -2 ; 0; 2 }

0 ist 2-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +3 x 2 -28 = 0

Lösung einblenden
x 4 +3 x 2 -28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = - 3 2 ± 121 4

x1 = - 3 2 - 11 2 = - 14 2 = -7

x2 = - 3 2 + 11 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 3 - 20 x = -x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x weg!

x 3 - 20 x = -x |⋅( x )
x 3 · x - 20 x · x = -x · x
x 3 · x -20 = - x · x
x 4 -20 = - x · x
x 4 -20 = - x 2
x 4 -20 = - x 2 | + x 2
x 4 + x 2 -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 + u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

u1,2 = -1 ± 1 +80 2

u1,2 = -1 ± 81 2

u1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

u2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -5

x 2 = -5 | 2

Diese Gleichung hat keine (reele) Lösung!

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 -8 x 3 = 0

Lösung einblenden
x 6 -8 x 3 = 0
x 3 ( x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -8 = 0 | +8
x 3 = 8 | 3
x2 = 8 3 = 2

L={0; 2 }

0 ist 3-fache Lösung!