nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

( x +2 ) · ( x -1 ) = 0

Lösung einblenden
( x +2 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x -1 = 0 | +1
x2 = 1

L={ -2 ; 1 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 2 - x = 0

Lösung einblenden
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 -5 x 2 -36 = 0

Lösung einblenden
x 4 -5 x 2 -36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -36 ) 21

u1,2 = +5 ± 25 +144 2

u1,2 = +5 ± 169 2

u1 = 5 + 169 2 = 5 +13 2 = 18 2 = 9

u2 = 5 - 169 2 = 5 -13 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( -36 ) = 25 4 + 36 = 25 4 + 144 4 = 169 4

x1,2 = 5 2 ± 169 4

x1 = 5 2 - 13 2 = - 8 2 = -4

x2 = 5 2 + 13 2 = 18 2 = 9

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

u2: x 2 = -4

x 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -3 ; 3 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

x 5 -9 x 2 = - 8 x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x weg!

x 5 -9 x 2 = - 8 x |⋅( x )
x 5 · x -9 x 2 · x = - 8 x · x
x 5 · x -9 x 2 · x = -8
x 6 -9 x 3 = -8
x 6 -9 x 3 = -8 | +8
x 6 -9 x 3 +8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 8 21

u1,2 = +9 ± 81 -32 2

u1,2 = +9 ± 49 2

u1 = 9 + 49 2 = 9 +7 2 = 16 2 = 8

u2 = 9 - 49 2 = 9 -7 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 8 = 81 4 - 8 = 81 4 - 32 4 = 49 4

x1,2 = 9 2 ± 49 4

x1 = 9 2 - 7 2 = 2 2 = 1

x2 = 9 2 + 7 2 = 16 2 = 8

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 6 - x 3 = 0

Lösung einblenden
x 6 - x 3 = 0
x 3 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

L={0; 1 }

0 ist 3-fache Lösung!