nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -1 ) 2 · ( x -2 ) 2 = 0

Lösung einblenden
x ( x -1 ) 2 ( x -2 ) 2 = 0
x ( ( x -1 ) ( x -2 ) ) 2 = 0
( ( x -1 ) ( x -2 ) ) 2 x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( ( x -1 ) ( x -2 ) ) 2 = 0 | 2
( x -1 ) ( x -2 ) = 0
( x -1 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -2 = 0 | +2
x2 = 2

2. Fall:

x3 = 0

L={0; 1 ; 2 }

1 ist 2-fache Lösung! 2 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 4 -8x = 0

Lösung einblenden
x 4 -8x = 0
x ( x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 3 -8 = 0 | +8
x 3 = 8 | 3
x2 = 8 3 = 2

L={0; 2 }

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +5 x 2 -6 = 0

Lösung einblenden
x 4 +5 x 2 -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -6 ) = 25 4 + 6 = 25 4 + 24 4 = 49 4

x1,2 = - 5 2 ± 49 4

x1 = - 5 2 - 7 2 = - 12 2 = -6

x2 = - 5 2 + 7 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

1 - 20 x 2 = - x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

1 - 20 x 2 = - x 2 |⋅( x 2 )
1 · x 2 - 20 x 2 · x 2 = - x 2 · x 2
x 2 -20 = - x 2 · x 2
x 2 -20 = - x 4
x 2 -20 = - x 4 | + x 4
x 4 + x 2 -20 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 + u -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

u1,2 = -1 ± 1 +80 2

u1,2 = -1 ± 81 2

u1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

u2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -5

x 2 = -5 | 2

Diese Gleichung hat keine (reele) Lösung!

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 2 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2x + x 2 = -1

Lösung einblenden
x 2 +2x = -1 | +1

x 2 +2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -1 ± 0 = -1

L={ -1 }

-1 ist 2-fache Lösung!