nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Polynomgleichungen (Nullprodukt)

Beispiel:

Löse die folgende Gleichung:

x · ( x -1 ) · ( x -4 ) 2 = 0

Lösung einblenden
x ( x -1 ) ( x -4 ) 2 = 0
x ( x -4 ) 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -4 ) 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x -4 ) 2 = 0 | 2
x -4 = 0
x -4 = 0 | +4
x2 = 4

2. Fall:

x -1 = 0 | +1
x3 = 1

L={0; 1 ; 4 }

4 ist 2-fache Lösung!

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 5 - x 3 = 0

Lösung einblenden
x 5 - x 3 = 0
x 3 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

L={ -1 ; 0; 1 }

0 ist 3-fache Lösung!

Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 +3 x 2 -28 = 0

Lösung einblenden
x 4 +3 x 2 -28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Polynomgleichungen (Substitution II)

Beispiel:

Löse die folgende Gleichung:

2 x 2 + x 4 = 24

Lösung einblenden
2 x 2 + x 4 = 24 | -24
x 4 +2 x 2 -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -24 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -24 ) 21

u1,2 = -2 ± 4 +96 2

u1,2 = -2 ± 100 2

u1 = -2 + 100 2 = -2 +10 2 = 8 2 = 4

u2 = -2 - 100 2 = -2 -10 2 = -12 2 = -6

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Polynomgleichungen (Ausklammern)

Beispiel:

Löse die folgende Gleichung:

x 3 - x = 0

Lösung einblenden
x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

L={ -1 ; 0; 1 }