nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

37 Wurzelterme vereinfachen

Beispiel:

Vereinfache den folgenden Term: ( x 4 ) 5 · ( x ) 3 ( x 4 ) 23

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

( x 4 ) 5 · ( x ) 3 ( x 4 ) 23

Wir schreiben zuerst die Wurzelterme in Potenzterme mit rationalen Hochzahlen um:

= x 5 4 · x 3 2 x 23 4

= x 3 2 · x 5 4 x 23 4

= x 3 2 + 5 4 x 23 4

= x 11 4 x 23 4

= x 11 4 - 23 4

= x -3

= 1 x 3

42 Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

x x -5 - 1 x +5 = 101 x 2 -25

Lösung einblenden

D=R\{ -5 ; 5 }

x x -5 - 1 x +5 = 101 ( x +5 ) ( x -5 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner ( x +5 ) ( x -5 ) weg!

x x -5 - 1 x +5 = 101 ( x +5 ) ( x -5 ) |⋅( ( x +5 ) ( x -5 ) )
x x -5 · ( x +5 ) ( x -5 ) - 1 x +5 · ( x +5 ) ( x -5 ) = 101 ( x +5 ) ( x -5 ) · ( x +5 ) ( x -5 )
x ( x +5 ) - x +5 = 101 x +5 x +5
x ( x +5 ) - x +5 = 101
x 2 +5x - x +5 = 101
x 2 +4x +5 = 101
x 2 +4x +5 = 101 | -101

x 2 +4x -96 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -96 ) 21

x1,2 = -4 ± 16 +384 2

x1,2 = -4 ± 400 2

x1 = -4 + 400 2 = -4 +20 2 = 16 2 = 8

x2 = -4 - 400 2 = -4 -20 2 = -24 2 = -12

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -96 ) = 4+ 96 = 100

x1,2 = -2 ± 100

x1 = -2 - 10 = -12

x2 = -2 + 10 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -12 ; 8 }

Funktionstermbestimmung (Grad 4)

Beispiel:

Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse, schneidet die y-Achse 7 Einheiten unterhalb des Ursprungs und hat den Hochpunkt H(1|-5 ).

Bestimme den Term der Funktion f.

Lösung einblenden

Wenn eine ganzrationale Funktion achsensymmetrisch zur y-Achse ist, kann der Funktionsterm nur gerade x-Exponenten haben.

f(-x) = f(x)

Der gesuchte Funktionsterm muss also f(x)= a x 4 + b x 2 + c für bestimmte Werte für a, b und c sein.

Da ihr Graph die y-Achse 7 Einheiten unterhalb des Ursprungs schneidet, muss f(0) = -7 gelten.

Und weil der (Hoch-)Punkt H(1|-5 ) auf dem Graph von f liegt, muss f(1) = -5 gelten.

Außerdem wissen wir ja, dass H(1|-5 ) ein Hochpunkt ist, also muss f'(1)=0 sein.

Somit haben wir drei Informationen:

  1. f(0) = -7 (y-Achsenabschnitt)
  2. f(1)=-5 (H(1|-5 ) liegt auf dem Graph)
  3. f'(1)=0 (Hochpunkt bei x=1)

Diese Informationen setzen wir in die allgemeine Funktion und deren Ableitung ein:
f(x)= a x 4 + b x 2 + c
f(x)= 4 a x 3 +2 b x +0

Daraus ergibt sich:

  1. f(0) = -7: a 0 4 + b 0 2 + c = -7, also c = -7
  2. f(1)=-5 : a 1 4 + b 1 2 + c = -5 , also 1⋅a + 1⋅b + c = -5
  3. f'(1)=0: 4 a 1 3 +2 b 1 +0 = 0, also 4a + 2b = 0

Wir sehen beim Betrachten der ersten Gleichungen, dass c = -7 ist und setzen dies in die zweite Gleichung ein:

2. f(1)=-5 1⋅a + 1⋅b + (-7) = -5 oder umgeformt:
1⋅a + 1⋅b = 2


Somit erhalten wir folgendes Lineare Gleichungssystem:

a +b = 2 (I) 4a +2b = 0 (II)

langsame Rechnung einblenden4·(I) -1·(II)

1a 1b = 2 (I) ( 4 -4 )a +( 4 -2 )b = ( 8 +0) (II)
a +b = 2 (I) +2b = 8 (II)
Zeile (II): +2b = 8

b = 4

eingesetzt in Zeile (I):

a +(4 ) = 2 | -4
1 a = -2 | : 1

a = -2

Die gesuchte Funktion ist also:

f(x) = -2 x 4 +4 x 2 -7

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)= 1 x

h(x)= ln( x )

i(x)= 1 x 2

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 1 gehört also zur Funktion f(x) = e x .

Zu Graph Nr. 2:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Der Graph Nr. 2 gehört also zur Funktion g(x) = 1 x .

Zu Graph Nr. 3:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Der Graph Nr. 3 gehört also zur Funktion h(x) = ln( x ) .

Zu Graph Nr. 4:

Den Graph von 1 x 2 erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso größer wird der Funktionswert. Je weiter x sich von 0 entfernt, umso kleiner wird der Funktionswert (weil ja x im Nenner steht). Im Gegensatz zu 1 x hat er sowohl für negative, als auch für positive x positive Funktionswerte. Er ist also achsensymmetrisch bzgl. der y-Achse und enthält z.B. die Punkte (1|1) und (-1|1).

Der Graph Nr. 4 gehört also zur Funktion i(x) = 1 x 2 .

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= 1 x

g(x)= x

h(x)= cos( x )

i(x)= sin( x )

j(x)= e x

k(x)= ln( x )

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 1 gehört also zur Funktion j(x) = e x .

Zu Graph Nr. 2:

Den Graph von 1 x erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso betragsmäßig größer wird der Funktionswert (weil ja x im Nenner steht). Je weiter x sich von 0 entfernt, umso betragsmäßig kleiner wird der Funktionswert, weil ja der Nenner immer größer wird. Der Graph verläuft durch die Punkte (1|1) und (-1|-1), weil f(1) = 1 1 = 1 und f(-1) = 1 -1 = -1. Im Gegensatz zu 1 x 2 hat er für negative x-Werte negative Funktionswerte und für positive x-Werte positive Funktionswerte.

Der Graph Nr. 2 gehört also zur Funktion f(x) = 1 x .

Zu Graph Nr. 3:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 3 gehört also zur Funktion i(x) = sin( x ) .

Zu Graph Nr. 4:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 4 gehört also zur Funktion h(x) = cos( x ) .

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)= - sin( x )

h(x)= - ln( x )

i(x)= - e x

j(x)= sin( x )

k(x)= ln( x )

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 1 gehört also zur Funktion h(x) = - ln( x ) .

Zu Graph Nr. 2:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Am Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 2 gehört also zur Funktion i(x) = - e x .

Zu Graph Nr. 3:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 3 gehört also zur Funktion j(x) = sin( x ) .

Zu Graph Nr. 4:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Am Graph Nr. 4 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 4 gehört also zur Funktion g(x) = - sin( x ) .