nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

37 Wurzelterme vereinfachen

Beispiel:

Vereinfache den folgenden Term: ( x 4 ) 3 ( x 4 ) 11 · x 2

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

( x 4 ) 3 ( x 4 ) 11 · x 2

Wir schreiben zuerst die Wurzelterme in Potenzterme mit rationalen Hochzahlen um:

= x 3 4 x 11 4 · x 2

= x 3 4 · x 2 x 11 4

= x 3 4 +2 x 11 4

= x 11 4 x 11 4

= x 11 4 - 11 4

= x 0

= 1

42 Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

x x -9 - 9 x +9 = 181 x 2 -81

Lösung einblenden

D=R\{ -9 ; 9 }

x x -9 - 9 x +9 = 181 ( x +9 ) ( x -9 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner ( x +9 ) ( x -9 ) weg!

x x -9 - 9 x +9 = 181 ( x +9 ) ( x -9 ) |⋅( ( x +9 ) ( x -9 ) )
x x -9 · ( x +9 ) ( x -9 ) - 9 x +9 · ( x +9 ) ( x -9 ) = 181 ( x +9 ) ( x -9 ) · ( x +9 ) ( x -9 )
x ( x +9 ) -9x +81 = 181 x +9 x +9
x ( x +9 ) -9x +81 = 181
x 2 +9x -9x +81 = 181
x 2 +81 = 181
x 2 +81 = 181 | -81
x 2 = 100 | 2
x1 = - 100 = -10
x2 = 100 = 10

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -10 ; 10 }

Funktionstermbestimmung (Grad 4)

Beispiel:

Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse, schneidet die y-Achse 4 Einheiten oberhalb des Ursprungs und hat den Hochpunkt H(1|7 ).

Bestimme den Term der Funktion f.

Lösung einblenden

Wenn eine ganzrationale Funktion achsensymmetrisch zur y-Achse ist, kann der Funktionsterm nur gerade x-Exponenten haben.

f(-x) = f(x)

Der gesuchte Funktionsterm muss also f(x)= a x 4 + b x 2 + c für bestimmte Werte für a, b und c sein.

Da ihr Graph die y-Achse 4 Einheiten oberhalb des Ursprungs schneidet, muss f(0) = 4 gelten.

Und weil der (Hoch-)Punkt H(1|7 ) auf dem Graph von f liegt, muss f(1) = 7 gelten.

Außerdem wissen wir ja, dass H(1|7 ) ein Hochpunkt ist, also muss f'(1)=0 sein.

Somit haben wir drei Informationen:

  1. f(0) = 4 (y-Achsenabschnitt)
  2. f(1)=7 (H(1|7 ) liegt auf dem Graph)
  3. f'(1)=0 (Hochpunkt bei x=1)

Diese Informationen setzen wir in die allgemeine Funktion und deren Ableitung ein:
f(x)= a x 4 + b x 2 + c
f(x)= 4 a x 3 +2 b x +0

Daraus ergibt sich:

  1. f(0) = 4: a 0 4 + b 0 2 + c = 4, also c = 4
  2. f(1)=7 : a 1 4 + b 1 2 + c = 7 , also 1⋅a + 1⋅b + c = 7
  3. f'(1)=0: 4 a 1 3 +2 b 1 +0 = 0, also 4a + 2b = 0

Wir sehen beim Betrachten der ersten Gleichungen, dass c = 4 ist und setzen dies in die zweite Gleichung ein:

2. f(1)=7 1⋅a + 1⋅b + 4 = 7 oder umgeformt:
1⋅a + 1⋅b = 3


Somit erhalten wir folgendes Lineare Gleichungssystem:

a +b = 3 (I) 4a +2b = 0 (II)

langsame Rechnung einblenden4·(I) -1·(II)

1a 1b = 3 (I) ( 4 -4 )a +( 4 -2 )b = ( 12 +0) (II)
a +b = 3 (I) +2b = 12 (II)
Zeile (II): +2b = 12

b = 6

eingesetzt in Zeile (I):

a +(6 ) = 3 | -6
1 a = -3 | : 1

a = -3

Die gesuchte Funktion ist also:

f(x) = -3 x 4 +6 x 2 +4

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)=tan(x)

h(x)= 1 x 2

i(x)= x 3

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Den Graph von 1 x 2 erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso größer wird der Funktionswert. Je weiter x sich von 0 entfernt, umso kleiner wird der Funktionswert (weil ja x im Nenner steht). Im Gegensatz zu 1 x hat er sowohl für negative, als auch für positive x positive Funktionswerte. Er ist also achsensymmetrisch bzgl. der y-Achse und enthält z.B. die Punkte (1|1) und (-1|1).

Der Graph Nr. 1 gehört also zur Funktion h(x) = 1 x 2 .

Zu Graph Nr. 2:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 2 gehört also zur Funktion i(x) = x 3 .

Zu Graph Nr. 3:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 3 gehört also zur Funktion f(x) = e x .

Zu Graph Nr. 4:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 4 gehört also zur Funktion g(x) = tan(x).

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)= sin( x )

h(x)= ln( x )

i(x)= cos( x )

j(x)= x

k(x)=tan(x)

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 1 gehört also zur Funktion i(x) = cos( x ) .

Zu Graph Nr. 2:

Der Graph von x hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.

Der Graph Nr. 2 gehört also zur Funktion j(x) = x .

Zu Graph Nr. 3:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 3 gehört also zur Funktion k(x) = tan(x).

Zu Graph Nr. 4:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 4 gehört also zur Funktion f(x) = e x .

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= - e x

g(x)= e x

h(x)= - sin( x )

i(x)=-tan(x)

j(x)= sin( x )

k(x)=tan(x)

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 1 gehört also zur Funktion f(x) = - e x .

Zu Graph Nr. 2:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 2 gehört also zur Funktion g(x) = e x .

Zu Graph Nr. 3:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Am Graph Nr. 3 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 3 gehört also zur Funktion h(x) = - sin( x ) .

Zu Graph Nr. 4:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 4 gehört also zur Funktion j(x) = sin( x ) .