nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

37 Wurzelterme vereinfachen

Beispiel:

Vereinfache den folgenden Term: ( x 3 ) 2 x · ( x 3 ) 4

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

( x 3 ) 2 x · ( x 3 ) 4

Wir schreiben zuerst die Wurzelterme in Potenzterme mit rationalen Hochzahlen um:

= x 2 3 x · x 4 3

= x 2 3 · x 4 3 x

= x 2 3 + 4 3 x

= x 2 x

= x 2 -1

= x

42 Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

x x +6 - 4 x -6 = 51 x 2 -36

Lösung einblenden

D=R\{ -6 ; 6 }

x x +6 - 4 x -6 = 51 ( x +6 ) ( x -6 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner ( x +6 ) ( x -6 ) weg!

x x +6 - 4 x -6 = 51 ( x +6 ) ( x -6 ) |⋅( ( x +6 ) ( x -6 ) )
x x +6 · ( x +6 ) ( x -6 ) - 4 x -6 · ( x +6 ) ( x -6 ) = 51 ( x +6 ) ( x -6 ) · ( x +6 ) ( x -6 )
x ( x -6 ) -4x -24 = 51 x +6 x +6
x ( x -6 ) -4x -24 = 51
x 2 -6x -4x -24 = 51
x 2 -10x -24 = 51
x 2 -10x -24 = 51 | -51

x 2 -10x -75 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · ( -75 ) 21

x1,2 = +10 ± 100 +300 2

x1,2 = +10 ± 400 2

x1 = 10 + 400 2 = 10 +20 2 = 30 2 = 15

x2 = 10 - 400 2 = 10 -20 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - ( -75 ) = 25+ 75 = 100

x1,2 = 5 ± 100

x1 = 5 - 10 = -5

x2 = 5 + 10 = 15

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 15 }

Funktionstermbestimmung (Grad 4)

Beispiel:

Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse, schneidet die y-Achse 1 Einheiten oberhalb des Ursprungs und hat den Hochpunkt H(3|10 ).

Bestimme den Term der Funktion f.

Lösung einblenden

Wenn eine ganzrationale Funktion achsensymmetrisch zur y-Achse ist, kann der Funktionsterm nur gerade x-Exponenten haben.

f(-x) = f(x)

Der gesuchte Funktionsterm muss also f(x)= a x 4 + b x 2 + c für bestimmte Werte für a, b und c sein.

Da ihr Graph die y-Achse 1 Einheiten oberhalb des Ursprungs schneidet, muss f(0) = 1 gelten.

Und weil der (Hoch-)Punkt H(3|10 ) auf dem Graph von f liegt, muss f(3) = 10 gelten.

Außerdem wissen wir ja, dass H(3|10 ) ein Hochpunkt ist, also muss f'(3)=0 sein.

Somit haben wir drei Informationen:

  1. f(0) = 1 (y-Achsenabschnitt)
  2. f(3)=10 (H(3|10 ) liegt auf dem Graph)
  3. f'(3)=0 (Hochpunkt bei x=3)

Diese Informationen setzen wir in die allgemeine Funktion und deren Ableitung ein:
f(x)= a x 4 + b x 2 + c
f(x)= 4 a x 3 +2 b x +0

Daraus ergibt sich:

  1. f(0) = 1: a 0 4 + b 0 2 + c = 1, also c = 1
  2. f(3)=10 : a 3 4 + b 3 2 + c = 10 , also 81⋅a + 9⋅b + c = 10
  3. f'(3)=0: 4 a 3 3 +2 b 3 +0 = 0, also 108a + 6b = 0

Wir sehen beim Betrachten der ersten Gleichungen, dass c = 1 ist und setzen dies in die zweite Gleichung ein:

2. f(3)=10 81⋅a + 9⋅b + 1 = 10 oder umgeformt:
81⋅a + 9⋅b = 9


Somit erhalten wir folgendes Lineare Gleichungssystem:

81a +9b = 9 (I) 108a +6b = 0 (II)

langsame Rechnung einblenden4·(I) -3·(II)

81a 9b = 9 (I) ( 324 -324 )a +( 36 -18 )b = ( 36 +0) (II)
81a +9b = 9 (I) +18b = 36 (II)
Zeile (II): +18b = 36

b = 2

eingesetzt in Zeile (I):

81a +9·(2 ) = 9 | -18
81 a = -9 | : 81

a = - 1 9

Die gesuchte Funktion ist also:

f(x) = - 1 9 x 4 +2 x 2 +1

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= sin( x )

g(x)= x

h(x)= e x

i(x)= 1 x 2

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 1 gehört also zur Funktion f(x) = sin( x ) .

Zu Graph Nr. 2:

Der Graph von x hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.

Der Graph Nr. 2 gehört also zur Funktion g(x) = x .

Zu Graph Nr. 3:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 3 gehört also zur Funktion h(x) = e x .

Zu Graph Nr. 4:

Den Graph von 1 x 2 erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso größer wird der Funktionswert. Je weiter x sich von 0 entfernt, umso kleiner wird der Funktionswert (weil ja x im Nenner steht). Im Gegensatz zu 1 x hat er sowohl für negative, als auch für positive x positive Funktionswerte. Er ist also achsensymmetrisch bzgl. der y-Achse und enthält z.B. die Punkte (1|1) und (-1|1).

Der Graph Nr. 4 gehört also zur Funktion i(x) = 1 x 2 .

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= cos( x )

g(x)= x

h(x)= x 2

i(x)=tan(x)

j(x)= e x

k(x)= x 3

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von x hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.

Der Graph Nr. 1 gehört also zur Funktion g(x) = x .

Zu Graph Nr. 2:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 2 gehört also zur Funktion i(x) = tan(x).

Zu Graph Nr. 3:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 3 gehört also zur Funktion k(x) = x 3 .

Zu Graph Nr. 4:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 4 gehört also zur Funktion f(x) = cos( x ) .

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= x 3

g(x)= cos( x )

h(x)= cos( x ) +1

i(x)= x

j(x)= x 3 +1

k(x)= x +1

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von x hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.

Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.

Der Graph Nr. 1 gehört also zur Funktion k(x) = x +1 .

Zu Graph Nr. 2:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Am Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch zusätzlich um 1 in y-Richtung verschoben wurden.

Der Graph Nr. 2 gehört also zur Funktion j(x) = x 3 +1 .

Zu Graph Nr. 3:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 3 gehört also zur Funktion f(x) = x 3 .

Zu Graph Nr. 4:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 4 gehört also zur Funktion g(x) = cos( x ) .