nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

37 Wurzelterme vereinfachen

Beispiel:

Vereinfache den folgenden Term: x 2 · x ( x ) 15

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

x 2 · x ( x ) 15

Wir schreiben zuerst die Wurzelterme in Potenzterme mit rationalen Hochzahlen um:

= x 2 · x 1 2 x 15 2

= x 1 2 · x 2 x 15 2

= x 1 2 +2 x 15 2

= x 5 2 x 15 2

= x 5 2 - 15 2

= x -5

= 1 x 5

42 Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

x x -3 - 9 x +3 = 22 x 2 -9

Lösung einblenden

D=R\{ -3 ; 3 }

x x -3 - 9 x +3 = 22 ( x +3 ) · ( x -3 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner ( x +3 ) · ( x -3 ) weg!

x x -3 - 9 x +3 = 22 ( x +3 ) · ( x -3 ) |⋅( ( x +3 ) · ( x -3 ) )
x x -3 · ( x +3 ) · ( x -3 ) - 9 x +3 · ( x +3 ) · ( x -3 ) = 22 ( x +3 ) · ( x -3 ) · ( x +3 ) · ( x -3 )
x ( x +3 ) -9x +27 = 22 x +3 x +3
x ( x +3 ) -9x +27 = 22
x 2 +3x -9x +27 = 22
x 2 -6x +27 = 22
x 2 -6x +27 = 22 | -22

x 2 -6x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 5 }

Funktionstermbestimmung (Grad 4)

Beispiel:

Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse, schneidet die y-Achse 6 Einheiten unterhalb des Ursprungs und hat den Hochpunkt H(1|-4 ).

Bestimme den Term der Funktion f.

Lösung einblenden

Wenn eine ganzrationale Funktion achsensymmetrisch zur y-Achse ist, kann der Funktionsterm nur gerade x-Exponenten haben.

f(-x) = f(x)

Der gesuchte Funktionsterm muss also f(x)= a x 4 + b x 2 + c für bestimmte Werte für a, b und c sein.

Da ihr Graph die y-Achse 6 Einheiten unterhalb des Ursprungs schneidet, muss f(0) = -6 gelten.

Und weil der (Hoch-)Punkt H(1|-4 ) auf dem Graph von f liegt, muss f(1) = -4 gelten.

Außerdem wissen wir ja, dass H(1|-4 ) ein Hochpunkt ist, also muss f'(1)=0 sein.

Somit haben wir drei Informationen:

  1. f(0) = -6 (y-Achsenabschnitt)
  2. f(1)=-4 (H(1|-4 ) liegt auf dem Graph)
  3. f'(1)=0 (Hochpunkt bei x=1)

Diese Informationen setzen wir in die allgemeine Funktion und deren Ableitung ein:
f(x)= a x 4 + b x 2 + c
f(x)= 4 a x 3 +2 b x +0

Daraus ergibt sich:

  1. f(0) = -6: a 0 4 + b 0 2 + c = -6, also c = -6
  2. f(1)=-4 : a 1 4 + b 1 2 + c = -4 , also 1⋅a + 1⋅b + c = -4
  3. f'(1)=0: 4 a 1 3 +2 b 1 +0 = 0, also 4a + 2b = 0

Wir sehen beim Betrachten der ersten Gleichungen, dass c = -6 ist und setzen dies in die zweite Gleichung ein:

2. f(1)=-4 1⋅a + 1⋅b + (-6) = -4 oder umgeformt:
1⋅a + 1⋅b = 2


Somit erhalten wir folgendes Lineare Gleichungssystem:

a +b = 2 (I) 4a +2b = 0 (II)

langsame Rechnung einblenden4·(I) -1·(II)

1a 1b = 2 (I) ( 4 -4 )a +( 4 -2 )b = ( 8 +0) (II)
a +b = 2 (I) +2b = 8 (II)
Zeile (II): +2b = 8

b = 4

eingesetzt in Zeile (I):

a +(4 ) = 2 | -4
1 a = -2 | : 1

a = -2

Die gesuchte Funktion ist also:

f(x) = -2 x 4 +4 x 2 -6

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= cos( x )

g(x)= e x

h(x)= x 3

i(x)= 1 x 2

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 1 gehört also zur Funktion g(x) = e x .

Zu Graph Nr. 2:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 2 gehört also zur Funktion f(x) = cos( x ) .

Zu Graph Nr. 3:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 3 gehört also zur Funktion h(x) = x 3 .

Zu Graph Nr. 4:

Den Graph von 1 x 2 erkennt man an den Asymptoten an den beiden Achsen. Es handelt sich um eine Hyperbel. Je näher x an 0 kommt, umso größer wird der Funktionswert. Je weiter x sich von 0 entfernt, umso kleiner wird der Funktionswert (weil ja x im Nenner steht). Im Gegensatz zu 1 x hat er sowohl für negative, als auch für positive x positive Funktionswerte. Er ist also achsensymmetrisch bzgl. der y-Achse und enthält z.B. die Punkte (1|1) und (-1|1).

Der Graph Nr. 4 gehört also zur Funktion i(x) = 1 x 2 .

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= e x

g(x)= ln( x )

h(x)= cos( x )

i(x)= x

j(x)= sin( x )

k(x)= 1 x 2

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von x hat im Bereich für negative x keine Funktionswerte. Er steigt zunächst sehr schnell, dann nimmt die Steigung aber ab. Er sieht aus wie eine halbe Parabel, die um 90° gedreht wurde. Er besitzt die Punkte (0|0), (1|1), (4|2), usw.

Der Graph Nr. 1 gehört also zur Funktion i(x) = x .

Zu Graph Nr. 2:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 2 gehört also zur Funktion f(x) = e x .

Zu Graph Nr. 3:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 3 gehört also zur Funktion h(x) = cos( x ) .

Zu Graph Nr. 4:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 4 gehört also zur Funktion j(x) = sin( x ) .

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)=tan(x)

g(x)= - ln( x )

h(x)= ln( x )

i(x)= - cos( x )

j(x)=-tan(x)

k(x)= cos( x )

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 1 gehört also zur Funktion g(x) = - ln( x ) .

Zu Graph Nr. 2:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Am Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 2 gehört also zur Funktion i(x) = - cos( x ) .

Zu Graph Nr. 3:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 3 gehört also zur Funktion f(x) = tan(x).

Zu Graph Nr. 4:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Am Graph Nr. 4 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 4 gehört also zur Funktion j(x) = -tan(x).