nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 255° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

255° sind aber nur ein 255° 360° Kreis, also ist die gesuchte Bogenlänge x zu 255° auch nur 255° 360° ⋅ 2π = 255 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 255° 180° ⋅π = 51 36 ⋅π = 17 12 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 4 3 π im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

4 3 π entspricht also dem Gradmaß 4 3 ⋅180° = 240°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 0.6 im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

0.6 = 0.6 π ⋅π entspricht also dem Gradmaß 0.6 π ⋅180° ≈ 34.4°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos( 3 4 π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

3 4 π bedeutet 3 8 eines Kreises, also 3 8 von 360° = 135°.

Am Einheitskreis kann man den Wert für cos( 3 4 π ) bzw. für cos(135°) ablesen:

cos 3 4 π ) bzw. cos(135°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos( 3 4 π °) ≈ -0.71

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Sinuswert haben wie x = 10 3 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 10 3 π. Dazu subtrahieren wir einfach 2π (= 6 3 π) vom gegebenen Winkel: 10 3 π - 6 3 π = 4 3 π.

Somit gilt x1 = 4 3 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Sinus-Werten symmetrisch bezüglich der y-Achse liegen, so dass man also x2 einfach als x2 = π - x1, also π - 4 3 π = - 1 3 π berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 1 3 π einfach - 1 3 π + 2 π = 5 3 π für x2.

Somit gilt: x1 = 4 3 π und x2 = 5 3 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 10 3 π als 10 3 ⋅ 180° = 600° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 240°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.

Wenn wir jetzt den (braunen) Ausgangswinkel 240° als negativen Winkel 240° -360° = -120° sehen, (also im Uhrzeigersinn unten rum), dann sehen wir, dass sich der gespiegelte (pinke) Winkel - im Uhrzeigersinn unten rum - mit dem Ausgangswinkel zu 180° ergänzt. Wir können also hier einfach -180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also

β = -180° - (-120°) = -60°

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -60° + 360° = 300°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 4 3 π und x2 = 5 3 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,7

Lösung einblenden
canvas
sin( x ) = 0,7 |sin-1(⋅)

Der WTR liefert nun als Wert 0.77539749661075

1. Fall:

x1 = 0,775

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,7 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,775 = 2,366 liegen muss.

2. Fall:

x2 = 2,366

L={ 0,775 ; 2,366 }