nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 0° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

0° sind aber nur ein 360° Kreis, also ist die gesuchte Bogenlänge x zu 0° auch nur 360° ⋅ 2π = 0 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 180° ⋅π = 0 6 ⋅π = 0⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = - 3 2 π im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

- 3 2 π entspricht also dem Gradmaß - 3 2 ⋅180° = -270°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 3.4 im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

3.4 = 3.4 π ⋅π entspricht also dem Gradmaß 3.4 π ⋅180° ≈ 194.8°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise sin( π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

π bedeutet 1 2 eines Kreises, also 1 2 von 360° = 180°.

Am Einheitskreis kann man den Wert für sin( π ) bzw. für sin(180°) ablesen:

sin( π ) bzw. sin(180°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:

sin( π °) ≈ 0

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Kosinuswert haben wie x = 8 3 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 8 3 π. Dazu subtrahieren wir einfach 2π (= 6 3 π) vom gegebenen Winkel: 8 3 π - 6 3 π = 2 3 π.

Somit gilt x1 = 2 3 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Kosinuns-Werten symmetrisch bezüglich der x-Achse liegen, so dass man also x2 einfach als x2 = - x1 berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 2 3 π einfach - 2 3 π + 2 π = 4 3 π für x2.

Somit gilt: x1 = 2 3 π und x2 = 4 3 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 8 3 π als 8 3 ⋅ 180° = 480° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 120°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Kosinuswert (oranger waagrechter Strich) symmetrisch zur x-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 120° an der x-Achse spiegelt, erhält man doch einfach den negativen Winkel -120°, also eben in die falsche Richtung gedreht: mit dem Uhrzeiger und unten rum.

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -120° + 360° = 240°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 2 3 π und x2 = 4 3 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,55

Lösung einblenden
canvas
cos( x ) = 0,55 |cos-1(⋅)

Der WTR liefert nun als Wert 0.98843208892615

1. Fall:

x1 = 0,988

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,55 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,988
bzw. bei - 0,988 +2π= 5,295 liegen muss.

2. Fall:

x2 = 5,295

L={ 0,988 ; 5,295 }