nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 120° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

120° sind aber nur ein 120° 360° Kreis, also ist die gesuchte Bogenlänge x zu 120° auch nur 120° 360° ⋅ 2π = 120 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 120° 180° ⋅π = 4 6 ⋅π = 2 3 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 1π im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

1π entspricht also dem Gradmaß 1⋅180° = 180°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 0.1 im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

0.1 = 0.1 π ⋅π entspricht also dem Gradmaß 0.1 π ⋅180° ≈ 5.7°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise sin( 5 2 π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

5 2 π bedeutet 5 4 eines Kreises, also 5 4 von 360° = 450°.

Da dieser Winkel > 2π ist, kann man diesen einfach als 450° = 90° + 360° schreiben kann. Das bedeutet, dass man bei 450° wieder an der gleichen Stelle im Einheitskreis ist wie bei 90°.

Am Einheitskreis kann man den Wert für sin( 5 2 π ) bzw. für sin(450°) ablesen:

sin( 5 2 π ) bzw. sin(450°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:

sin( 5 2 π °) ≈ 1

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Sinuswert haben wie x = 19 6 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 19 6 π. Dazu subtrahieren wir einfach 2π (= 12 6 π) vom gegebenen Winkel: 19 6 π - 12 6 π = 7 6 π.

Somit gilt x1 = 7 6 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Sinus-Werten symmetrisch bezüglich der y-Achse liegen, so dass man also x2 einfach als x2 = π - x1, also π - 7 6 π = - 1 6 π berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 1 6 π einfach - 1 6 π + 2 π = 11 6 π für x2.

Somit gilt: x1 = 7 6 π und x2 = 11 6 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 19 6 π als 19 6 ⋅ 180° = 570° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 210°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.

Wenn wir jetzt den (braunen) Ausgangswinkel 210° als negativen Winkel 210° -360° = -150° sehen, (also im Uhrzeigersinn unten rum), dann sehen wir, dass sich der gespiegelte (pinke) Winkel - im Uhrzeigersinn unten rum - mit dem Ausgangswinkel zu 180° ergänzt. Wir können also hier einfach -180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also

β = -180° - (-150°) = -30°

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -30° + 360° = 330°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 7 6 π und x2 = 11 6 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -1

Lösung einblenden
canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x = π

L={ π }