nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 210° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

210° sind aber nur ein 210° 360° Kreis, also ist die gesuchte Bogenlänge x zu 210° auch nur 210° 360° ⋅ 2π = 210 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 210° 180° ⋅π = 7 6 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 2π im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

2π entspricht also dem Gradmaß 2⋅180° = 360°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 2.8 im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

2.8 = 2.8 π ⋅π entspricht also dem Gradmaß 2.8 π ⋅180° ≈ 160.4°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise sin( - 1 2 π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

- 1 2 π bedeutet - 1 4 eines Kreises, also - 1 4 von 360° = -90°.

Bei negativen Winkel muss man einfach in die andere Richtung, also im Urzeigersinn, im Einheitskreis vorgehen. Dabei landet man dann natürlich wieder an der gleichen Stelle wie bei -90° + 360° = 270°

Am Einheitskreis kann man den Wert für sin( - 1 2 π ) bzw. für sin(-90°) ablesen:

sin( - 1 2 π ) bzw. sin(-90°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:

sin( - 1 2 π °) ≈ -1

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Kosinuswert haben wie x = 13 4 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 13 4 π. Dazu subtrahieren wir einfach 2π (= 8 4 π) vom gegebenen Winkel: 13 4 π - 8 4 π = 5 4 π.

Somit gilt x1 = 5 4 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Kosinuns-Werten symmetrisch bezüglich der x-Achse liegen, so dass man also x2 einfach als x2 = - x1 berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 5 4 π einfach - 5 4 π + 2 π = 3 4 π für x2.

Somit gilt: x1 = 5 4 π und x2 = 3 4 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 13 4 π als 13 4 ⋅ 180° = 585° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 225°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Kosinuswert (oranger waagrechter Strich) symmetrisch zur x-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 225° an der x-Achse spiegelt, erhält man doch einfach den negativen Winkel -225°, also eben in die falsche Richtung gedreht: mit dem Uhrzeiger und unten rum.

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -225° + 360° = 135°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 5 4 π und x2 = 3 4 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,55

Lösung einblenden
canvas
sin( x ) = -0,55 |sin-1(⋅)

Der WTR liefert nun als Wert -0.58236423786874

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,701

1. Fall:

x1 = 5,701

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,55 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,701 =-2.5594 bzw. bei -2.5594+2π= 3,724 liegen muss.

2. Fall:

x2 = 3,724

L={ 3,724 ; 5,701 }