nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,2

Lösung einblenden
canvas
sin( x ) = 0,2 |sin-1(⋅)

Der WTR liefert nun als Wert 0.20135792079033

1. Fall:

x1 = 0,201

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,2 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,201 = 2,94 liegen muss.

2. Fall:

x2 = 2,94

L={ 0,201 ; 2,94 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( x + π) +3 = 3

Lösung einblenden
-2 sin( x + π) +3 = 3 | -3
-2 sin( x + π) = 0 |:-2
canvas
sin( x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + π = 0

oder

x + π = 0+2π
x + π = 2π | - π
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + π = π | - π
x2 = 0

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
- sin( 3x + 3 2 π) = 0,65

Lösung einblenden
- sin( 3x + 3 2 π) = 0,65 |:-1
canvas
sin( 3x + 3 2 π) = -0,65 |sin-1(⋅)

Der WTR liefert nun als Wert -0.70758443672536

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2 3 π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,576

1. Fall:

3x + 3 2 π = 5,576 |⋅ 2
2( 3x + 3 2 π) = 11,152
6x +3π = 11,152 | -3π
6x = 11,152 -3π
6x = 1,7272 |:6
x1 = 0,2879

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 3 2 π) = -0,65 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.65 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,576 =-2.4344 bzw. bei -2.4344+2π= 3,849 liegen muss.

2. Fall:

3x + 3 2 π = 3,849

oder

3x + 3 2 π = 3,849 +2π |⋅ 2
6x +3π = 7,698 +4π | -3π
6x = 7,698 + π
6x = 10,8396 |:6
x2 = 1,8066

L={ 0,2879 ; 1,8066 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 +2 ( sin( x ) ) 2 -3 = 0

Lösung einblenden
( sin( x ) ) 4 +2 ( sin( x ) ) 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = -3

( sin( x ) ) 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0

Lösung einblenden
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0
( sin( x ) ) 2 ( ( sin( x ) ) 2 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( sin( x ) ) 2 = 0 | 2
sin( x ) = 0
canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

( sin( x ) ) 2 +1 = 0 | -1
( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={0; π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!