nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,55

Lösung einblenden
canvas
sin( x ) = -0,55 |sin-1(⋅)

Der WTR liefert nun als Wert -0.58236423786874

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,701

1. Fall:

x1 = 5,701

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,55 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,701 =-2.5594 bzw. bei -2.5594+2π= 3,724 liegen muss.

2. Fall:

x2 = 3,724

L={ 3,724 ; 5,701 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 sin( x + π) -1 = -1

Lösung einblenden
2 sin( x + π) -1 = -1 | +1
2 sin( x + π) = 0 |:2
canvas
sin( x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + π = 0

oder

x + π = 0+2π
x + π = 2π | - π
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + π = π | - π
x2 = 0

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
cos( x + 1 2 π) -2 = -1,2

Lösung einblenden
cos( x + 1 2 π) -2 = -1,2 | +2 canvas
cos( x + 1 2 π) = 0,8 |cos-1(⋅)

Der WTR liefert nun als Wert 0.64350110879328

1. Fall:

x + 1 2 π = 0,644

oder

x + 1 2 π = 0,644 +2π |⋅ 2
2x + π = 1,288 +4π | - π
2x = 1,288 +3π
2x = 10,7128 |:2
x1 = 5,3564

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0,8 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,644
bzw. bei - 0,644 +2π= 5,64 liegen muss.

2. Fall:

x + 1 2 π = 5,64 |⋅ 2
2( x + 1 2 π) = 11,28
2x + π = 11,28 | - π
2x = 11,28 - π
2x = 8,1384 |:2
x2 = 4,0692

L={ 4,0692 ; 5,3564 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 6 π ; 5 6 π ; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -2 cos( x ) +1 = 0

Lösung einblenden
( cos( x ) ) 2 -2 cos( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0}

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 cos( x - π) · ( sin( x ) -1 ) = 0

Lösung einblenden
3 cos( x - π) · ( sin( x ) -1 ) = 0
3 cos( x - π) ( sin( x ) -1 ) = 0
3 ( sin( x ) -1 ) · cos( x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - π = 1 2 π | + π
x2 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - π = 3 2 π

oder

x - π = 3 2 π-2π
x - π = - 1 2 π | + π
x3 = 1 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!