nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,65

Lösung einblenden
canvas
sin( x ) = 0,65 |sin-1(⋅)

Der WTR liefert nun als Wert 0.70758443672536

1. Fall:

x1 = 0,708

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,65 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.65 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,708 = 2,434 liegen muss.

2. Fall:

x2 = 2,434

L={ 0,708 ; 2,434 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( x - 1 2 π) -3 = -3

Lösung einblenden
sin( x - 1 2 π) -3 = -3 | +3 canvas
sin( x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 0 |⋅ 2
2( x - 1 2 π) = 0
2x - π = 0 | + π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - 1 2 π = π |⋅ 2
2( x - 1 2 π) = 2π
2x - π = 2π | + π
2x = 3π |:2
x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
- sin( 3x + 1 2 π) +3 = 2

Lösung einblenden
- sin( 3x + 1 2 π) +3 = 2 | -3
- sin( 3x + 1 2 π) = -1 |:-1
canvas
sin( 3x + 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 1 2 π = 1 2 π |⋅ 2
2( 3x + 1 2 π) = π
6x + π = π | - π
6x = 0 |:6
x = 0

L={0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Lösung einblenden
( sin( x ) ) 4 +5 ( sin( x ) ) 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

Rücksubstitution:

u1: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

u2: ( sin( x ) ) 2 = -4

( sin( x ) ) 2 = -4 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( 2x + 3 2 π) · cos( x ) = 0

Lösung einblenden
cos( 2x + 3 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
cos( 2x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 1 2 π

oder

2x + 3 2 π = 1 2 π+2π
2x + 3 2 π = 5 2 π |⋅ 2
2( 2x + 3 2 π) = 5π
4x +3π = 5π | -3π
4x = 2π |:4
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x2 = 0

Da cos( 2x + 3 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 1 2 π + 1⋅ π = 3 2 π , x4 = 0 + 1⋅ π = π


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x5 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x6 = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!