nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,85

Lösung einblenden
canvas
sin( x ) = -0,85 |sin-1(⋅)

Der WTR liefert nun als Wert -1.0159852938148

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,267

1. Fall:

x1 = 5,267

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,85 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.85 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,267 =-2.1254 bzw. bei -2.1254+2π= 4,158 liegen muss.

2. Fall:

x2 = 4,158

L={ 4,158 ; 5,267 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( 2x + 1 2 π) +3 = 3

Lösung einblenden
- sin( 2x + 1 2 π) +3 = 3 | -3
- sin( 2x + 1 2 π) = 0 |:-1
canvas
sin( 2x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 1 2 π = 0

oder

2x + 1 2 π = 0+2π
2x + 1 2 π = 2π |⋅ 2
2( 2x + 1 2 π) = 4π
4x + π = 4π | - π
4x = 3π |:4
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 1 2 π = π |⋅ 2
2( 2x + 1 2 π) = 2π
4x + π = 2π | - π
4x = π |:4
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-2 sin( 2x + 1 2 π) -3 = -2,3

Lösung einblenden
-2 sin( 2x + 1 2 π) -3 = -2,3 | +3
-2 sin( 2x + 1 2 π) = 0,7 |:-2
canvas
sin( 2x + 1 2 π) = -0,35 |sin-1(⋅)

Der WTR liefert nun als Wert -0.35757110364551

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,926

1. Fall:

2x + 1 2 π = 5,926 |⋅ 2
2( 2x + 1 2 π) = 11,852
4x + π = 11,852 | - π
4x = 11,852 - π
4x = 8,7104 |:4
x1 = 2,1776

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 1 2 π) = -0,35 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,926 =-2.7844 bzw. bei -2.7844+2π= 3,499 liegen muss.

2. Fall:

2x + 1 2 π = 3,499 |⋅ 2
2( 2x + 1 2 π) = 6,998
4x + π = 6,998 | - π
4x = 6,998 - π
4x = 3,8564 |:4
x2 = 0,9641

L={ 0,9641 ; 2,1776 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -4

sin( x ) = -4

Diese Gleichung hat keine Lösung!

L={ 1 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 3 2 π }