nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,95

Lösung einblenden
canvas
sin( x ) = 0,95 |sin-1(⋅)

Der WTR liefert nun als Wert 1.2532358975034

1. Fall:

x1 = 1,253

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,95 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.95 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 1,253 = 1,888 liegen muss.

2. Fall:

x2 = 1,888

L={ 1,253 ; 1,888 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( 3x - 3 2 π) +1 = 1

Lösung einblenden
-2 sin( 3x - 3 2 π) +1 = 1 | -1
-2 sin( 3x - 3 2 π) = 0 |:-2
canvas
sin( 3x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 3 2 π = 0 |⋅ 2
2( 3x - 3 2 π) = 0
6x -3π = 0 | +3π
6x = 3π |:6
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x - 3 2 π = π

oder

3x - 3 2 π = π-2π
3x - 3 2 π = -π |⋅ 2
2( 3x - 3 2 π) = -2π
6x -3π = -2π | +3π
6x = π |:6
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
sin( 2x - 3 2 π) +2 = 1,85

Lösung einblenden
sin( 2x - 3 2 π) +2 = 1,85 | -2 canvas
sin( 2x - 3 2 π) = -0,15 |sin-1(⋅)

Der WTR liefert nun als Wert -0.15056827277669

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 6,133

1. Fall:

2x - 3 2 π = 6,133

oder

2x - 3 2 π = 6,133 -2π |⋅ 2
4x -3π = 12,266 -4π | +3π
4x = 12,266 - π
4x = 9,1244 |:4
x1 = 2,2811

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 3 2 π) = -0,15 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.15 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 6,133 =-2.9914 bzw. bei -2.9914+2π= 3,292 liegen muss.

2. Fall:

2x - 3 2 π = 3,292

oder

2x - 3 2 π = 3,292 -2π |⋅ 2
4x -3π = 6,584 -4π | +3π
4x = 6,584 - π
4x = 3,4424 |:4
x2 = 0,8606

L={ 0,8606 ; 2,2811 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) +3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 -2 sin( x ) +1 = 0

Lösung einblenden
( sin( x ) ) 2 -2 sin( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π }

1 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 sin( 3x - 1 2 π) · sin( x ) = 0

Lösung einblenden
-2 sin( 3x - 1 2 π) · sin( x ) = 0
-2 sin( 3x - 1 2 π) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( 3x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 1 2 π = 0 |⋅ 2
2( 3x - 1 2 π) = 0
6x - π = 0 | + π
6x = π |:6
x1 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x - 1 2 π = π |⋅ 2
2( 3x - 1 2 π) = 2π
6x - π = 2π | + π
6x = 3π |:6
x2 = 1 2 π

Da sin( 3x - 1 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 1 6 π + 1⋅ 2 3 π = 5 6 π , x4 = 1 2 π + 1⋅ 2 3 π = 7 6 π
x5 = 1 6 π + 2⋅ 2 3 π = 3 2 π , x6 = 1 2 π + 2⋅ 2 3 π = 11 6 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x7 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x8 = π

L={0; 1 6 π ; 1 2 π ; 5 6 π ; π ; 7 6 π ; 3 2 π ; 11 6 π }