nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,35

Lösung einblenden
canvas
cos( x ) = 0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.2132252231494

1. Fall:

x1 = 1,213

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,213
bzw. bei - 1,213 +2π= 5,07 liegen muss.

2. Fall:

x2 = 5,07

L={ 1,213 ; 5,07 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( x - π) -2 = -2

Lösung einblenden
-3 sin( x - π) -2 = -2 | +2
-3 sin( x - π) = 0 |:-3
canvas
sin( x - π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - π = 0 | + π
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x - π = π

oder

x - π = π-2π
x - π = -π | + π
x2 = 0

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
cos( x - 3 2 π) -2 = -1,25

Lösung einblenden
cos( x - 3 2 π) -2 = -1,25 | +2 canvas
cos( x - 3 2 π) = 0,75 |cos-1(⋅)

Der WTR liefert nun als Wert 0.72273424781342

1. Fall:

x - 3 2 π = 0,723 |⋅ 2
2( x - 3 2 π) = 1,446
2x -3π = 1,446 | +3π
2x = 1,446 +3π
2x = 10,8708 |:2
x1 = 5,4354

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0,75 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,723
bzw. bei - 0,723 +2π= 5,56 liegen muss.

2. Fall:

x - 3 2 π = 5,56

oder

x - 3 2 π = 5,56 -2π |⋅ 2
2x -3π = 11,12 -4π | +3π
2x = 11,12 - π
2x = 7,9784 |:2
x2 = 3,9892

L={ 3,9892 ; 5,4354 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 -5 sin( x ) +4 = 0

Lösung einblenden
( sin( x ) ) 2 -5 sin( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Rücksubstitution:

u1: sin( x ) = 4

sin( x ) = 4

Diese Gleichung hat keine Lösung!

u2: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

L={ 1 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 3 - x 2 ) · ( 2 sin( 3x + 1 2 π) -2 ) = 0

Lösung einblenden
( x 3 - x 2 ) ( 2 sin( 3x + 1 2 π) -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 - x 2 = 0
x 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

2 sin( 3x + 1 2 π) -2 = 0 | +2
2 sin( 3x + 1 2 π) = 2 |:2
canvas
sin( 3x + 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 1 2 π = 1 2 π |⋅ 2
2( 3x + 1 2 π) = π
6x + π = π | - π
6x = 0 |:6
x3 = 0

L={0; 1 }

0 ist 3-fache Lösung!