nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,55

Lösung einblenden
canvas
sin( x ) = 0,55 |sin-1(⋅)

Der WTR liefert nun als Wert 0.58236423786874

1. Fall:

x1 = 0,582

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,55 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,582 = 2,559 liegen muss.

2. Fall:

x2 = 2,559

L={ 0,582 ; 2,559 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 2x - 3 2 π) = 0

Lösung einblenden
-3 cos( 2x - 3 2 π) = 0 |:-3
canvas
cos( 2x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 3 2 π = 1 2 π

oder

2x - 3 2 π = 1 2 π-2π
2x - 3 2 π = - 3 2 π |⋅ 2
2( 2x - 3 2 π) = -3π
4x -3π = -3π | +3π
4x = 0 |:4
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x - 3 2 π = 3 2 π

oder

2x - 3 2 π = 3 2 π-2π
2x - 3 2 π = - 1 2 π |⋅ 2
2( 2x - 3 2 π) = -π
4x -3π = -π | +3π
4x = 2π |:4
x2 = 1 2 π

L={0; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
sin( 3x + π) +1 = 0,3

Lösung einblenden
sin( 3x + π) +1 = 0,3 | -1 canvas
sin( 3x + π) = -0,7 |sin-1(⋅)

Der WTR liefert nun als Wert -0.77539749661075

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2 3 π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,508

1. Fall:

3x + π = 5,508 | - π
3x = 5,508 - π
3x = 2,3664 |:3
x1 = 0,7888

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + π) = -0,7 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,508 =-2.3664 bzw. bei -2.3664+2π= 3,917 liegen muss.

2. Fall:

3x + π = 3,917 | - π
3x = 3,917 - π
3x = 0,7754 |:3
x2 = 0,2585

L={ 0,2585 ; 0,7888 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -2 ( sin( x ) ) 2 +1 = 0

Lösung einblenden
( sin( x ) ) 4 -2 ( sin( x ) ) 2 +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 1 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 cos( x - π) · ( sin( x ) -1 ) = 0

Lösung einblenden
3 cos( x - π) · ( sin( x ) -1 ) = 0
3 cos( x - π) ( sin( x ) -1 ) = 0
3 ( sin( x ) -1 ) · cos( x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - π = 1 2 π | + π
x2 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - π = 3 2 π

oder

x - π = 3 2 π-2π
x - π = - 1 2 π | + π
x3 = 1 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!