nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,75

Lösung einblenden
canvas
sin( x ) = 0,75 |sin-1(⋅)

Der WTR liefert nun als Wert 0.84806207898148

1. Fall:

x1 = 0,848

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,75 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,848 = 2,294 liegen muss.

2. Fall:

x2 = 2,294

L={ 0,848 ; 2,294 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( 3x - 1 2 π) +3 = 3

Lösung einblenden
-2 sin( 3x - 1 2 π) +3 = 3 | -3
-2 sin( 3x - 1 2 π) = 0 |:-2
canvas
sin( 3x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 1 2 π = 0 |⋅ 2
2( 3x - 1 2 π) = 0
6x - π = 0 | + π
6x = π |:6
x1 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x - 1 2 π = π |⋅ 2
2( 3x - 1 2 π) = 2π
6x - π = 2π | + π
6x = 3π |:6
x2 = 1 2 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
3 cos( x + 1 2 π) -1 = 0,8

Lösung einblenden
3 cos( x + 1 2 π) -1 = 0,8 | +1
3 cos( x + 1 2 π) = 1,8 |:3
canvas
cos( x + 1 2 π) = 0,6 |cos-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

x + 1 2 π = 0,927

oder

x + 1 2 π = 0,927 +2π |⋅ 2
2x + π = 1,854 +4π | - π
2x = 1,854 +3π
2x = 11,2788 |:2
x1 = 5,6394

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0,6 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,927
bzw. bei - 0,927 +2π= 5,356 liegen muss.

2. Fall:

x + 1 2 π = 5,356 |⋅ 2
2( x + 1 2 π) = 10,712
2x + π = 10,712 | - π
2x = 10,712 - π
2x = 7,5704 |:2
x2 = 3,7852

L={ 3,7852 ; 5,6394 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x2 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x3 = 4 3 π

L={0; 2 3 π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 cos( 3x + 1 2 π) · ( sin( x ) -1 ) = 0

Lösung einblenden
-2 cos( 3x + 1 2 π) · ( sin( x ) -1 ) = 0
-2 cos( 3x + 1 2 π) ( sin( x ) -1 ) = 0
-2 ( sin( x ) -1 ) · cos( 3x + 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( 3x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 1 2 π |⋅ 2
2( 3x + 1 2 π) = π
6x + π = π | - π
6x = 0 |:6
x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 1 2 π = 3 2 π |⋅ 2
2( 3x + 1 2 π) = 3π
6x + π = 3π | - π
6x = 2π |:6
x3 = 1 3 π

Da cos( 3x + 1 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 0 + 1⋅ 2 3 π = 2 3 π , x5 = 1 3 π + 1⋅ 2 3 π = π
x6 = 0 + 2⋅ 2 3 π = 4 3 π , x7 = 1 3 π + 2⋅ 2 3 π = 5 3 π

L={0; 1 3 π ; 1 2 π ; 2 3 π ; π ; 4 3 π ; 5 3 π }