nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,35

Lösung einblenden
canvas
cos( x ) = -0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9283674304404

1. Fall:

x1 = 1,928

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,928
bzw. bei - 1,928 +2π= 4,355 liegen muss.

2. Fall:

x2 = 4,355

L={ 1,928 ; 4,355 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( 2x + π) +3 = 3

Lösung einblenden
-2 sin( 2x + π) +3 = 3 | -3
-2 sin( 2x + π) = 0 |:-2
canvas
sin( 2x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + π = 0

oder

2x + π = 0+2π
2x + π = 2π | - π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + π = π | - π
2x = 0 |:2
x2 = 0

L={0; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-2 sin( 2x + π) +2 = 0,5

Lösung einblenden
-2 sin( 2x + π) +2 = 0,5 | -2
-2 sin( 2x + π) = -1,5 |:-2
canvas
sin( 2x + π) = 0,75 |sin-1(⋅)

Der WTR liefert nun als Wert 0.84806207898148

1. Fall:

2x + π = 0,848

oder

2x + π = 0,848 +2π | - π
2x = 0,848 + π
2x = 3,9896 |:2
x1 = 1,9948

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0,75 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,848 = 2,294 liegen muss.

2. Fall:

2x + π = 2,294

oder

2x + π = 2,294 +2π | - π
2x = 2,294 + π
2x = 5,4356 |:2
x2 = 2,7178

L={ 1,9948 ; 2,7178 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x 3 -3 x 2 ) · ( - sin( 2x - 3 2 π) +1 ) = 0

Lösung einblenden
( x 3 -3 x 2 ) ( - sin( 2x - 3 2 π) +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 -3 x 2 = 0
x 2 ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

2. Fall:

- sin( 2x - 3 2 π) +1 = 0 | -1
- sin( 2x - 3 2 π) = -1 |:-1
canvas
sin( 2x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 3 2 π = 1 2 π

oder

2x - 3 2 π = 1 2 π-2π
2x - 3 2 π = - 3 2 π |⋅ 2
2( 2x - 3 2 π) = -3π
4x -3π = -3π | +3π
4x = 0 |:4
x3 = 0

L={0; 3 }

0 ist 3-fache Lösung!