nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,35

Lösung einblenden
canvas
cos( x ) = 0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.2132252231494

1. Fall:

x1 = 1,213

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,213
bzw. bei - 1,213 +2π= 5,07 liegen muss.

2. Fall:

x2 = 5,07

L={ 1,213 ; 5,07 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 3x - 1 2 π) +2 = 5

Lösung einblenden
-3 sin( 3x - 1 2 π) +2 = 5 | -2
-3 sin( 3x - 1 2 π) = 3 |:-3
canvas
sin( 3x - 1 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 1 2 π = 3 2 π

oder

3x - 1 2 π = 3 2 π-2π
3x - 1 2 π = - 1 2 π |⋅ 2
2( 3x - 1 2 π) = -π
6x - π = -π | + π
6x = 0 |:6
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 cos( x - π) +1 = 1,4

Lösung einblenden
-2 cos( x - π) +1 = 1,4 | -1
-2 cos( x - π) = 0,4 |:-2
canvas
cos( x - π) = -0,2 |cos-1(⋅)

Der WTR liefert nun als Wert 1.7721542475852

1. Fall:

x - π = 1,772 | + π
x1 = 1,772 + π
x1 = 4,9136

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - π) = -0,2 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,772
bzw. bei - 1,772 +2π= 4,511 liegen muss.

2. Fall:

x - π = 4,511

oder

x - π = 4,511 -2π | + π
x2 = 4,511 - π
x2 = 1,3694

L={ 1,3694 ; 4,9136 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 1 2 sin( x ) - 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 - 1 2 sin( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -0,5

canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x2 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x3 = 7 6 π

L={ 1 2 π ; 7 6 π ; 11 6 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( - sin( 3x - 3 2 π) +1 ) · ( x 3 -2 x 2 ) = 0

Lösung einblenden
( - sin( 3x - 3 2 π) +1 ) ( x 3 -2 x 2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- sin( 3x - 3 2 π) +1 = 0 | -1
- sin( 3x - 3 2 π) = -1 |:-1
canvas
sin( 3x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - 3 2 π = 1 2 π

oder

3x - 3 2 π = 1 2 π-2π
3x - 3 2 π = - 3 2 π |⋅ 2
2( 3x - 3 2 π) = -3π
6x -3π = -3π | +3π
6x = 0 |:6
x1 = 0

2. Fall:

x 3 -2 x 2 = 0
x 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x2 = 0

2. Fall:

x -2 = 0 | +2
x3 = 2

L={0; 2 }

0 ist 3-fache Lösung!