nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0

Lösung einblenden
canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 2x - 3 2 π) +2 = 2

Lösung einblenden
-3 sin( 2x - 3 2 π) +2 = 2 | -2
-3 sin( 2x - 3 2 π) = 0 |:-3
canvas
sin( 2x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 3 2 π = 0 |⋅ 2
2( 2x - 3 2 π) = 0
4x -3π = 0 | +3π
4x = 3π |:4
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - 3 2 π = π

oder

2x - 3 2 π = π-2π
2x - 3 2 π = -π |⋅ 2
2( 2x - 3 2 π) = -2π
4x -3π = -2π | +3π
4x = π |:4
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 sin( x - 1 2 π) -2 = -3

Lösung einblenden
-2 sin( x - 1 2 π) -2 = -3 | +2
-2 sin( x - 1 2 π) = -1 |:-2
canvas
sin( x - 1 2 π) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x - 1 2 π = 5 6 π |⋅ 2
2( x - 1 2 π) = 5 3 π
2x - π = 5 3 π | + π
2x = 8 3 π |:2
x1 = 4 3 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 1 2 π) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x - 1 2 π = 1 6 π |⋅ 2
2( x - 1 2 π) = 1 3 π
2x - π = 1 3 π | + π
2x = 4 3 π |:2
x2 = 2 3 π

L={ 2 3 π ; 4 3 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) +3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +3 = 0 | -3
2 cos( x ) = -3 |:2
cos( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Lösung einblenden
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · 3 21

u1,2 = -4 ± 16 -12 2

u1,2 = -4 ± 4 2

u1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

u2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={ π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 3 cos( 2x + π) -3 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( 3 cos( 2x + π) -3 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 cos( 2x + π) -3 = 0 | +3
3 cos( 2x + π) = 3 |:3
canvas
cos( 2x + π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + π = 0

oder

2x + π = 0+2π
2x + π = 2π | - π
2x = π |:2
x1 = 1 2 π

Da 3 cos( 2x + π) -3 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 2 π + 1⋅ π = 3 2 π


2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 0

L={0; 1 2 π ; 3 2 π }