nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,5

Lösung einblenden
canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

L={ 2 3 π ; 4 3 π }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 3x + 1 2 π) = -3

Lösung einblenden
3 cos( 3x + 1 2 π) = -3 |:3
canvas
cos( 3x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x = 1 6 π

L={ 1 6 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
- cos( x + π) -2 = -2,1

Lösung einblenden
- cos( x + π) -2 = -2,1 | +2
- cos( x + π) = -0,1 |:-1
canvas
cos( x + π) = 0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.4706289056333

1. Fall:

x + π = 1,471

oder

x + π = 1,471 +2π | - π
x1 = 1,471 + π
x1 = 4,6126

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + π) = 0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,471
bzw. bei - 1,471 +2π= 4,813 liegen muss.

2. Fall:

x + π = 4,813 | - π
x2 = 4,813 - π
x2 = 1,6714

L={ 1,6714 ; 4,6126 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 -3 sin( x ) +2 = 0

Lösung einblenden
( sin( x ) ) 2 -3 sin( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

u1,2 = +3 ± 9 -8 2

u1,2 = +3 ± 1 2

u1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

u2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

Rücksubstitution:

u1: sin( x ) = 2

sin( x ) = 2

Diese Gleichung hat keine Lösung!

u2: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

L={ 1 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
3 cos( 2x + 3 2 π) · ( x -1 ) = 0

Lösung einblenden
3 cos( 2x + 3 2 π) · ( x -1 ) = 0
3 cos( 2x + 3 2 π) ( x -1 ) = 0
3 ( x -1 ) · cos( 2x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

canvas
cos( 2x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 1 2 π

oder

2x + 3 2 π = 1 2 π+2π
2x + 3 2 π = 5 2 π |⋅ 2
2( 2x + 3 2 π) = 5π
4x +3π = 5π | -3π
4x = 2π |:4
x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x3 = 0

L={0; 1 ; 1 2 π }