nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,05

Lösung einblenden
canvas
sin( x ) = -0,05 |sin-1(⋅)

Der WTR liefert nun als Wert -0.05002085680577

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 6,233

1. Fall:

x1 = 6,233

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,05 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.05 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 6,233 =-3.0914 bzw. bei -3.0914+2π= 3,192 liegen muss.

2. Fall:

x2 = 3,192

L={ 3,192 ; 6,233 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( x + 1 2 π) -3 = 0

Lösung einblenden
-3 sin( x + 1 2 π) -3 = 0 | +3
-3 sin( x + 1 2 π) = 3 |:-3
canvas
sin( x + 1 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 3 2 π |⋅ 2
2( x + 1 2 π) = 3π
2x + π = 3π | - π
2x = 2π |:2
x = π

L={ π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
2 cos( 2x - π) -2 = -3,4

Lösung einblenden
2 cos( 2x - π) -2 = -3,4 | +2
2 cos( 2x - π) = -1,4 |:2
canvas
cos( 2x - π) = -0,7 |cos-1(⋅)

Der WTR liefert nun als Wert 2.3461938234056

1. Fall:

2x - π = 2,346 | + π
2x = 2,346 + π
2x = 5,4876 |:2
x1 = 2,7438

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = -0,7 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,346
bzw. bei - 2,346 +2π= 3,937 liegen muss.

2. Fall:

2x - π = 3,937

oder

2x - π = 3,937 -2π | + π
2x = 3,937 - π
2x = 0,7954 |:2
x2 = 0,3977

L={ 0,3977 ; 2,7438 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 1 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + 1 2 cos( x ) = 0
1 2 ( 2 cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +1 = 0 | -1
2 cos( x ) = -1 |:2
canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 2 3 π ; 4 3 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
sin( 2x + π) · cos( x ) = 0

Lösung einblenden
sin( 2x + π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( 2x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + π = 0

oder

2x + π = 0+2π
2x + π = 2π | - π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + π = π | - π
2x = 0 |:2
x2 = 0

Da sin( 2x + π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 1 2 π + 1⋅ π = 3 2 π , x4 = 0 + 1⋅ π = π


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x5 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x6 = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!