nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,4

Lösung einblenden
canvas
cos( x ) = 0,4 |cos-1(⋅)

Der WTR liefert nun als Wert 1.1592794807274

1. Fall:

x1 = 1,159

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,4 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,159
bzw. bei - 1,159 +2π= 5,124 liegen muss.

2. Fall:

x2 = 5,124

L={ 1,159 ; 5,124 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( x - 3 2 π) +3 = 1

Lösung einblenden
-2 sin( x - 3 2 π) +3 = 1 | -3
-2 sin( x - 3 2 π) = -2 |:-2
canvas
sin( x - 3 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
- sin( 2x + π) +2 = 1,75

Lösung einblenden
- sin( 2x + π) +2 = 1,75 | -2
- sin( 2x + π) = -0,25 |:-1
canvas
sin( 2x + π) = 0,25 |sin-1(⋅)

Der WTR liefert nun als Wert 0.25268025514208

1. Fall:

2x + π = 0,253

oder

2x + π = 0,253 +2π | - π
2x = 0,253 + π
2x = 3,3946 |:2
x1 = 1,6973

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + π) = 0,25 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.25 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,253 = 2,889 liegen muss.

2. Fall:

2x + π = 2,889

oder

2x + π = 2,889 +2π | - π
2x = 2,889 + π
2x = 6,0306 |:2
x2 = 3,0153

L={ 1,6973 ; 3,0153 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 1 2 cos( x ) - 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 1 2 cos( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 + 1 2 u - 1 2 ) = 0

2 u 2 + u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 2 · ( -1 ) 22

u1,2 = -1 ± 1 +8 4

u1,2 = -1 ± 9 4

u1 = -1 + 9 4 = -1 +3 4 = 2 4 = 0,5

u2 = -1 - 9 4 = -1 -3 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 + u -1 = 0 |: 2

u 2 + 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = - 1 4 ± 9 16

x1 = - 1 4 - 3 4 = - 4 4 = -1

x2 = - 1 4 + 3 4 = 2 4 = 0.5

Rücksubstitution:

u1: cos( x ) = 0,5

canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 1 3 π ; π ; 5 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 sin( 2x + 1 2 π) · cos( x ) = 0

Lösung einblenden
-2 sin( 2x + 1 2 π) · cos( x ) = 0
-2 sin( 2x + 1 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( 2x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 1 2 π = 0

oder

2x + 1 2 π = 0+2π
2x + 1 2 π = 2π |⋅ 2
2( 2x + 1 2 π) = 4π
4x + π = 4π | - π
4x = 3π |:4
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 1 2 π = π |⋅ 2
2( 2x + 1 2 π) = 2π
4x + π = 2π | - π
4x = π |:4
x2 = 1 4 π

Da sin( 2x + 1 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 3 4 π + 1⋅ π = 7 4 π , x4 = 1 4 π + 1⋅ π = 5 4 π


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x5 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x6 = 3 2 π

L={ 1 4 π ; 1 2 π ; 3 4 π ; 5 4 π ; 3 2 π ; 7 4 π }