nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,2

Lösung einblenden
canvas
sin( x ) = -0,2 |sin-1(⋅)

Der WTR liefert nun als Wert -0.20135792079033

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 6,082

1. Fall:

x1 = 6,082

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,2 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 6,082 =-2.9404 bzw. bei -2.9404+2π= 3,343 liegen muss.

2. Fall:

x2 = 3,343

L={ 3,343 ; 6,082 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 3x - 1 2 π) -2 = -2

Lösung einblenden
- cos( 3x - 1 2 π) -2 = -2 | +2
- cos( 3x - 1 2 π) = 0 |:-1
canvas
cos( 3x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 1 2 π = 1 2 π |⋅ 2
2( 3x - 1 2 π) = π
6x - π = π | + π
6x = 2π |:6
x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - 1 2 π = 3 2 π

oder

3x - 1 2 π = 3 2 π-2π
3x - 1 2 π = - 1 2 π |⋅ 2
2( 3x - 1 2 π) = -π
6x - π = -π | + π
6x = 0 |:6
x2 = 0

L={0; 1 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
2 cos( 3x + 3 2 π) -1 = 1

Lösung einblenden
2 cos( 3x + 3 2 π) -1 = 1 | +1
2 cos( 3x + 3 2 π) = 2 |:2
canvas
cos( 3x + 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 3 2 π = 0

oder

3x + 3 2 π = 0+2π
3x + 3 2 π = 2π |⋅ 2
2( 3x + 3 2 π) = 4π
6x +3π = 4π | -3π
6x = π |:6
x = 1 6 π

L={ 1 6 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 7 6 π ; 3 2 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 1 2 cos( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x2 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x3 = 4 3 π

L={0; 2 3 π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 cos( x - 1 2 π) · sin( x ) = 0

Lösung einblenden
3 cos( x - 1 2 π) · sin( x ) = 0
3 cos( x - 1 2 π) · sin( x ) = 0
3 sin( x ) · cos( x - 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

canvas
cos( x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 1 2 π |⋅ 2
2( x - 1 2 π) = π
2x - π = π | + π
2x = 2π |:2
x3 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 1 2 π = 3 2 π

oder

x - 1 2 π = 3 2 π-2π
x - 1 2 π = - 1 2 π |⋅ 2
2( x - 1 2 π) = -π
2x - π = -π | + π
2x = 0 |:2
x4 = 0

L={0; π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!