nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,6

Lösung einblenden
canvas
cos( x ) = -0,6 |cos-1(⋅)

Der WTR liefert nun als Wert 2.2142974355882

1. Fall:

x1 = 2,214

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,6 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,214
bzw. bei - 2,214 +2π= 4,069 liegen muss.

2. Fall:

x2 = 4,069

L={ 2,214 ; 4,069 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( x + 3 2 π) +2 = -1

Lösung einblenden
-3 cos( x + 3 2 π) +2 = -1 | -2
-3 cos( x + 3 2 π) = -3 |:-3
canvas
cos( x + 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 3 2 π = 0

oder

x + 3 2 π = 0+2π
x + 3 2 π = 2π |⋅ 2
2( x + 3 2 π) = 4π
2x +3π = 4π | -3π
2x = π |:2
x = 1 2 π

L={ 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
sin( x - π) +2 = 2,15

Lösung einblenden
sin( x - π) +2 = 2,15 | -2 canvas
sin( x - π) = 0,15 |sin-1(⋅)

Der WTR liefert nun als Wert 0.15056827277669

1. Fall:

x - π = 0,151 | + π
x1 = 0,151 + π
x1 = 3,2926

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = 0,15 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.15 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,151 = 2,991 liegen muss.

2. Fall:

x - π = 2,991 | + π
x2 = 2,991 + π
x2 = 6,1326

L={ 3,2926 ; 6,1326 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 7 6 π ; 3 2 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={0}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 3 - x 2 ) · ( -2 sin( 3x + 3 2 π) ) = 0

Lösung einblenden
( x 3 - x 2 ) · ( -2 sin( 3x + 3 2 π) ) = 0
-2 ( x 3 - x 2 ) · sin( 3x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 - x 2 = 0
x 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
sin( 3x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 0

oder

3x + 3 2 π = 0+2π
3x + 3 2 π = 2π |⋅ 2
2( 3x + 3 2 π) = 4π
6x +3π = 4π | -3π
6x = π |:6
x3 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 3 2 π = π

oder

3x + 3 2 π = π+2π
3x + 3 2 π = 3π |⋅ 2
2( 3x + 3 2 π) = 6π
6x +3π = 6π | -3π
6x = 3π |:6
x4 = 1 2 π

L={0; 1 6 π ; 1 ; 1 2 π }

0 ist 2-fache Lösung!