nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,4

Lösung einblenden
canvas
cos( x ) = -0,4 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9823131728624

1. Fall:

x1 = 1,982

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,4 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,982
bzw. bei - 1,982 +2π= 4,301 liegen muss.

2. Fall:

x2 = 4,301

L={ 1,982 ; 4,301 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( x + 1 2 π) -1 = -1

Lösung einblenden
sin( x + 1 2 π) -1 = -1 | +1 canvas
sin( x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 1 2 π = 0

oder

x + 1 2 π = 0+2π
x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x1 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + 1 2 π = π |⋅ 2
2( x + 1 2 π) = 2π
2x + π = 2π | - π
2x = π |:2
x2 = 1 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
3 sin( 3x - 1 2 π) -3 = -1,95

Lösung einblenden
3 sin( 3x - 1 2 π) -3 = -1,95 | +3
3 sin( 3x - 1 2 π) = 1,05 |:3
canvas
sin( 3x - 1 2 π) = 0,35 |sin-1(⋅)

Der WTR liefert nun als Wert 0.35757110364551

1. Fall:

3x - 1 2 π = 0,358 |⋅ 2
2( 3x - 1 2 π) = 0,716
6x - π = 0,716 | + π
6x = 0,716 + π
6x = 3,8576 |:6
x1 = 0,6429

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 1 2 π) = 0,35 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,358 = 2,784 liegen muss.

2. Fall:

3x - 1 2 π = 2,784 |⋅ 2
2( 3x - 1 2 π) = 5,568
6x - π = 5,568 | + π
6x = 5,568 + π
6x = 8,7096 |:6
x2 = 1,4516

L={ 0,6429 ; 1,4516 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) +3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={0}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 3 - x 2 ) · cos( 3x + 3 2 π) = 0

Lösung einblenden
( x 3 - x 2 ) · cos( 3x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 - x 2 = 0
x 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
cos( 3x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 1 2 π

oder

3x + 3 2 π = 1 2 π+2π
3x + 3 2 π = 5 2 π |⋅ 2
2( 3x + 3 2 π) = 5π
6x +3π = 5π | -3π
6x = 2π |:6
x3 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 3 2 π = 3 2 π |⋅ 2
2( 3x + 3 2 π) = 3π
6x +3π = 3π | -3π
6x = 0 |:6
x4 = 0

L={0; 1 ; 1 3 π }

0 ist 3-fache Lösung!