nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,3

Lösung einblenden
canvas
sin( x ) = -0,3 |sin-1(⋅)

Der WTR liefert nun als Wert -0.3046926540154

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,978

1. Fall:

x1 = 5,978

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,3 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.3 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,978 =-2.8364 bzw. bei -2.8364+2π= 3,446 liegen muss.

2. Fall:

x2 = 3,446

L={ 3,446 ; 5,978 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 3x + 1 2 π) -3 = -3

Lösung einblenden
-2 cos( 3x + 1 2 π) -3 = -3 | +3
-2 cos( 3x + 1 2 π) = 0 |:-2
canvas
cos( 3x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 1 2 π |⋅ 2
2( 3x + 1 2 π) = π
6x + π = π | - π
6x = 0 |:6
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 1 2 π = 3 2 π |⋅ 2
2( 3x + 1 2 π) = 3π
6x + π = 3π | - π
6x = 2π |:6
x2 = 1 3 π

L={0; 1 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
3 sin( 2x + 3 2 π) +1 = 3,55

Lösung einblenden
3 sin( 2x + 3 2 π) +1 = 3,55 | -1
3 sin( 2x + 3 2 π) = 2,55 |:3
canvas
sin( 2x + 3 2 π) = 0,85 |sin-1(⋅)

Der WTR liefert nun als Wert 1.0159852938148

1. Fall:

2x + 3 2 π = 1,016

oder

2x + 3 2 π = 1,016 +2π |⋅ 2
4x +3π = 2,032 +4π | -3π
4x = 2,032 + π
4x = 5,1736 |:4
x1 = 1,2934

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0,85 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.85 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 1,016 = 2,126 liegen muss.

2. Fall:

2x + 3 2 π = 2,126

oder

2x + 3 2 π = 2,126 +2π |⋅ 2
4x +3π = 4,252 +4π | -3π
4x = 4,252 + π
4x = 7,3936 |:4
x2 = 1,8484

L={ 1,2934 ; 1,8484 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) - 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 + 1 2 u - 1 2 ) = 0

2 u 2 + u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 2 · ( -1 ) 22

u1,2 = -1 ± 1 +8 4

u1,2 = -1 ± 9 4

u1 = -1 + 9 4 = -1 +3 4 = 2 4 = 0,5

u2 = -1 - 9 4 = -1 -3 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 + u -1 = 0 |: 2

u 2 + 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = - 1 4 ± 9 16

x1 = - 1 4 - 3 4 = - 4 4 = -1

x2 = - 1 4 + 3 4 = 2 4 = 0.5

Rücksubstitution:

u1: sin( x ) = 0,5

canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

L={ 1 6 π ; 5 6 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -1 = 0

Lösung einblenden
( cos( x ) ) 2 -1 = 0 | +1
( cos( x ) ) 2 = 1 | 2

1. Fall

cos( x ) = - 1 = -1
canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall

cos( x ) = 1 = 1
canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0; π }