nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,45

Lösung einblenden
canvas
cos( x ) = 0,45 |cos-1(⋅)

Der WTR liefert nun als Wert 1.1040309877476

1. Fall:

x1 = 1,104

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,45 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.45 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,104
bzw. bei - 1,104 +2π= 5,179 liegen muss.

2. Fall:

x2 = 5,179

L={ 1,104 ; 5,179 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 2x + π) +1 = 1

Lösung einblenden
-2 cos( 2x + π) +1 = 1 | -1
-2 cos( 2x + π) = 0 |:-2
canvas
cos( 2x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + π = 1 2 π

oder

2x + π = 1 2 π+2π
2x + π = 5 2 π | - π
2x = 3 2 π |:2
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + π = 3 2 π | - π
2x = 1 2 π |:2
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
3 cos( 2x - 1 2 π) -1 = 0,8

Lösung einblenden
3 cos( 2x - 1 2 π) -1 = 0,8 | +1
3 cos( 2x - 1 2 π) = 1,8 |:3
canvas
cos( 2x - 1 2 π) = 0,6 |cos-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

2x - 1 2 π = 0,927 |⋅ 2
2( 2x - 1 2 π) = 1,854
4x - π = 1,854 | + π
4x = 1,854 + π
4x = 4,9956 |:4
x1 = 1,2489

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - 1 2 π) = 0,6 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,927
bzw. bei - 0,927 +2π= 5,356 liegen muss.

2. Fall:

2x - 1 2 π = 5,356

oder

2x - 1 2 π = 5,356 -2π |⋅ 2
4x - π = 10,712 -4π | + π
4x = 10,712 -3π
4x = 1,2872 |:4
x2 = 0,3218

L={ 0,3218 ; 1,2489 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) + 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = 0,5

canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x2 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x3 = 1 6 π

L={ 1 6 π ; 1 2 π ; 5 6 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( - cos( x + 3 2 π) -1 ) · sin( x ) = 0

Lösung einblenden
( - cos( x + 3 2 π) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- cos( x + 3 2 π) -1 = 0 | +1
- cos( x + 3 2 π) = 1 |:-1
canvas
cos( x + 3 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 3 2 π = π

oder

x + 3 2 π = π+2π
x + 3 2 π = 3π |⋅ 2
2( x + 3 2 π) = 6π
2x +3π = 6π | -3π
2x = 3π |:2
x1 = 3 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π ; 3 2 π }