nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,95

Lösung einblenden
canvas
cos( x ) = 0,95 |cos-1(⋅)

Der WTR liefert nun als Wert 0.31756042929152

1. Fall:

x1 = 0,318

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,95 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.95 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,318
bzw. bei - 0,318 +2π= 5,966 liegen muss.

2. Fall:

x2 = 5,966

L={ 0,318 ; 5,966 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( 3x + π) -3 = -3

Lösung einblenden
-2 sin( 3x + π) -3 = -3 | +3
-2 sin( 3x + π) = 0 |:-2
canvas
sin( 3x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + π = 0

oder

3x + π = 0+2π
3x + π = 2π | - π
3x = π |:3
x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + π = π | - π
3x = 0 |:3
x2 = 0

L={0; 1 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
- cos( 2x - 3 2 π) -2 = -1,65

Lösung einblenden
- cos( 2x - 3 2 π) -2 = -1,65 | +2
- cos( 2x - 3 2 π) = 0,35 |:-1
canvas
cos( 2x - 3 2 π) = -0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9283674304404

1. Fall:

2x - 3 2 π = 1,928

oder

2x - 3 2 π = 1,928 -2π |⋅ 2
4x -3π = 3,856 -4π | +3π
4x = 3,856 - π
4x = 0,7144 |:4
x1 = 0,1786

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - 3 2 π) = -0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,928
bzw. bei - 1,928 +2π= 4,355 liegen muss.

2. Fall:

2x - 3 2 π = 4,355

oder

2x - 3 2 π = 4,355 -2π |⋅ 2
4x -3π = 8,71 -4π | +3π
4x = 8,71 - π
4x = 5,5684 |:4
x2 = 1,3921

L={ 0,1786 ; 1,3921 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) -2 = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 1 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) = 0
( sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π ; 3 2 π }