nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,35

Lösung einblenden
canvas
cos( x ) = 0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.2132252231494

1. Fall:

x1 = 1,213

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,213
bzw. bei - 1,213 +2π= 5,07 liegen muss.

2. Fall:

x2 = 5,07

L={ 1,213 ; 5,07 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( 3x + 3 2 π) -2 = -2

Lösung einblenden
cos( 3x + 3 2 π) -2 = -2 | +2 canvas
cos( 3x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 1 2 π

oder

3x + 3 2 π = 1 2 π+2π
3x + 3 2 π = 5 2 π |⋅ 2
2( 3x + 3 2 π) = 5π
6x +3π = 5π | -3π
6x = 2π |:6
x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + 3 2 π = 3 2 π |⋅ 2
2( 3x + 3 2 π) = 3π
6x +3π = 3π | -3π
6x = 0 |:6
x2 = 0

L={0; 1 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
3 cos( 3x - π) +3 = 2,55

Lösung einblenden
3 cos( 3x - π) +3 = 2,55 | -3
3 cos( 3x - π) = -0,45 |:3
canvas
cos( 3x - π) = -0,15 |cos-1(⋅)

Der WTR liefert nun als Wert 1.7213645995716

1. Fall:

3x - π = 1,721 | + π
3x = 1,721 + π
3x = 4,8626 |:3
x1 = 1,6209

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = -0,15 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.15 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,721
bzw. bei - 1,721 +2π= 4,562 liegen muss.

2. Fall:

3x - π = 4,562

oder

3x - π = 4,562 -2π | + π
3x = 4,562 - π
3x = 1,4204 |:3
x2 = 0,4735

L={ 0,4735 ; 1,6209 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + sin( x ) = 0
( sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -2 ( sin( x ) ) 2 +1 = 0

Lösung einblenden
( sin( x ) ) 4 -2 ( sin( x ) ) 2 +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 1 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
( x 2 - x ) · 3 sin( 3x + 1 2 π) = 0

Lösung einblenden
( x 2 - x ) · 3 sin( 3x + 1 2 π) = 0
3 ( x 2 - x ) · sin( 3x + 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

2. Fall:

canvas
sin( 3x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 0

oder

3x + 1 2 π = 0+2π
3x + 1 2 π = 2π |⋅ 2
2( 3x + 1 2 π) = 4π
6x + π = 4π | - π
6x = 3π |:6
x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x4 = 1 6 π

L={0; 1 6 π ; 1 ; 1 2 π }