nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,7

Lösung einblenden
canvas
cos( x ) = 0,7 |cos-1(⋅)

Der WTR liefert nun als Wert 0.79539883018414

1. Fall:

x1 = 0,795

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,7 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,795
bzw. bei - 0,795 +2π= 5,488 liegen muss.

2. Fall:

x2 = 5,488

L={ 0,795 ; 5,488 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 3x + 1 2 π) = 0

Lösung einblenden
-3 sin( 3x + 1 2 π) = 0 |:-3
canvas
sin( 3x + 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 1 2 π = 0

oder

3x + 1 2 π = 0+2π
3x + 1 2 π = 2π |⋅ 2
2( 3x + 1 2 π) = 4π
6x + π = 4π | - π
6x = 3π |:6
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
- sin( x - 3 2 π) -3 = -2,9

Lösung einblenden
- sin( x - 3 2 π) -3 = -2,9 | +3
- sin( x - 3 2 π) = 0,1 |:-1
canvas
sin( x - 3 2 π) = -0,1 |sin-1(⋅)

Der WTR liefert nun als Wert -0.10016742116156

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 6,183

1. Fall:

x - 3 2 π = 6,183

oder

x - 3 2 π = 6,183 -2π |⋅ 2
2x -3π = 12,366 -4π | +3π
2x = 12,366 - π
2x = 9,2244 |:2
x1 = 4,6122

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - 3 2 π) = -0,1 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 6,183 =-3.0414 bzw. bei -3.0414+2π= 3,242 liegen muss.

2. Fall:

x - 3 2 π = 3,242

oder

x - 3 2 π = 3,242 -2π |⋅ 2
2x -3π = 6,484 -4π | +3π
2x = 6,484 - π
2x = 3,3424 |:2
x2 = 1,6712

L={ 1,6712 ; 4,6122 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) -2 = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - u -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

u1,2 = +1 ± 1 +8 2

u1,2 = +1 ± 9 2

u1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

u2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Rücksubstitution:

u1: cos( x ) = 2

cos( x ) = 2

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( x -1 ) · 3 cos( x + π) = 0

Lösung einblenden
( x -1 ) · 3 cos( x + π) = 0
3 ( x -1 ) · cos( x + π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

canvas
cos( x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + π = 1 2 π

oder

x + π = 1 2 π+2π
x + π = 5 2 π | - π
x2 = 3 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + π = 3 2 π | - π
x3 = 1 2 π

L={ 1 ; 1 2 π ; 3 2 π }