nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0

Lösung einblenden
canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 3x - π) +1 = 1

Lösung einblenden
-3 cos( 3x - π) +1 = 1 | -1
-3 cos( 3x - π) = 0 |:-3
canvas
cos( 3x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - π = 1 2 π | + π
3x = 3 2 π |:3
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - π = 3 2 π

oder

3x - π = 3 2 π-2π
3x - π = - 1 2 π | + π
3x = 1 2 π |:3
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
sin( 3x - π) +3 = 3,65

Lösung einblenden
sin( 3x - π) +3 = 3,65 | -3 canvas
sin( 3x - π) = 0,65 |sin-1(⋅)

Der WTR liefert nun als Wert 0.70758443672536

1. Fall:

3x - π = 0,708 | + π
3x = 0,708 + π
3x = 3,8496 |:3
x1 = 1,2832

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - π) = 0,65 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.65 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,708 = 2,434 liegen muss.

2. Fall:

3x - π = 2,434 | + π
3x = 2,434 + π
3x = 5,5756 |:3
x2 = 1,8585

L={ 1,2832 ; 1,8585 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; π ; 7 6 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 1 2 ( sin( x ) ) 2 - 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 1 2 ( sin( x ) ) 2 - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = -0,5

( sin( x ) ) 2 = -0,5 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Lösung einblenden
( sin( x ) ) 2 +3 sin( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -2

sin( x ) = -2

Diese Gleichung hat keine Lösung!

L={ 3 2 π }