nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,4

Lösung einblenden
canvas
sin( x ) = 0,4 |sin-1(⋅)

Der WTR liefert nun als Wert 0.41151684606749

1. Fall:

x1 = 0,412

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,4 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,412 = 2,73 liegen muss.

2. Fall:

x2 = 2,73

L={ 0,412 ; 2,73 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( x + 3 2 π) +3 = 3

Lösung einblenden
- cos( x + 3 2 π) +3 = 3 | -3
- cos( x + 3 2 π) = 0 |:-1
canvas
cos( x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 1 2 π

oder

x + 3 2 π = 1 2 π+2π
x + 3 2 π = 5 2 π |⋅ 2
2( x + 3 2 π) = 5π
2x +3π = 5π | -3π
2x = 2π |:2
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 3 2 π = 3 2 π |⋅ 2
2( x + 3 2 π) = 3π
2x +3π = 3π | -3π
2x = 0 |:2
x2 = 0

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
- sin( 2x + 3 2 π) -3 = -3,6

Lösung einblenden
- sin( 2x + 3 2 π) -3 = -3,6 | +3
- sin( 2x + 3 2 π) = -0,6 |:-1
canvas
sin( 2x + 3 2 π) = 0,6 |sin-1(⋅)

Der WTR liefert nun als Wert 0.64350110879328

1. Fall:

2x + 3 2 π = 0,644

oder

2x + 3 2 π = 0,644 +2π |⋅ 2
4x +3π = 1,288 +4π | -3π
4x = 1,288 + π
4x = 4,4296 |:4
x1 = 1,1074

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0,6 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,644 = 2,498 liegen muss.

2. Fall:

2x + 3 2 π = 2,498

oder

2x + 3 2 π = 2,498 +2π |⋅ 2
4x +3π = 4,996 +4π | -3π
4x = 4,996 + π
4x = 8,1376 |:4
x2 = 2,0344

L={ 1,1074 ; 2,0344 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -1 = 0 | +1
2 cos( x ) = 1 |:2
canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x2 = 5 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 1 3 π ; π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -4

cos( x ) = -4

Diese Gleichung hat keine Lösung!

L={0}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 2 cos( 2x - 1 2 π) +2 ) · sin( x ) = 0

Lösung einblenden
( 2 cos( 2x - 1 2 π) +2 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( 2x - 1 2 π) +2 = 0 | -2
2 cos( 2x - 1 2 π) = -2 |:2
canvas
cos( 2x - 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 1 2 π = π |⋅ 2
2( 2x - 1 2 π) = 2π
4x - π = 2π | + π
4x = 3π |:4
x1 = 3 4 π

Da 2 cos( 2x - 1 2 π) +2 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 3 4 π + 1⋅ π = 7 4 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 3 4 π ; π ; 7 4 π }