nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,9

Lösung einblenden
canvas
cos( x ) = 0,9 |cos-1(⋅)

Der WTR liefert nun als Wert 0.45102681179626

1. Fall:

x1 = 0,451

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,9 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.9 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,451
bzw. bei - 0,451 +2π= 5,832 liegen muss.

2. Fall:

x2 = 5,832

L={ 0,451 ; 5,832 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( 2x - 3 2 π) = 0

Lösung einblenden
canvas
sin( 2x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 3 2 π = 0 |⋅ 2
2( 2x - 3 2 π) = 0
4x -3π = 0 | +3π
4x = 3π |:4
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - 3 2 π = π

oder

2x - 3 2 π = π-2π
2x - 3 2 π = -π |⋅ 2
2( 2x - 3 2 π) = -2π
4x -3π = -2π | +3π
4x = π |:4
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-2 sin( 2x - π) +3 = 4,7

Lösung einblenden
-2 sin( 2x - π) +3 = 4,7 | -3
-2 sin( 2x - π) = 1,7 |:-2
canvas
sin( 2x - π) = -0,85 |sin-1(⋅)

Der WTR liefert nun als Wert -1.0159852938148

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,267

1. Fall:

2x - π = 5,267

oder

2x - π = 5,267 -2π | + π
2x = 5,267 - π
2x = 2,1254 |:2
x1 = 1,0627

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - π) = -0,85 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.85 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,267 =-2.1254 bzw. bei -2.1254+2π= 4,158 liegen muss.

2. Fall:

2x - π = 4,158

oder

2x - π = 4,158 -2π | + π
2x = 4,158 - π
2x = 1,0164 |:2
x2 = 0,5082

L={ 0,5082 ; 1,0627 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) = 0
1 2 ( 2 cos( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) -3 = 0 | +3
2 cos( x ) = 3 |:2
cos( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 1 2 ( sin( x ) ) 2 - 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 1 2 ( sin( x ) ) 2 - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = -0,5

( sin( x ) ) 2 = -0,5 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2 3 π ):
3 cos( 3x - π) · ( x 3 -2 x 2 ) = 0

Lösung einblenden
3 cos( 3x - π) · ( x 3 -2 x 2 ) = 0
3 cos( 3x - π) ( x 3 -2 x 2 ) = 0
3 ( x 3 -2 x 2 ) · cos( 3x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 -2 x 2 = 0
x 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

2. Fall:

canvas
cos( 3x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - π = 1 2 π | + π
3x = 3 2 π |:3
x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - π = 3 2 π

oder

3x - π = 3 2 π-2π
3x - π = - 1 2 π | + π
3x = 1 2 π |:3
x4 = 1 6 π

L={0; 1 6 π ; 1 2 π ; 2 }

0 ist 2-fache Lösung!