nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 1

Lösung einblenden
canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x = 0

L={0}

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 2x + π) +2 = -1

Lösung einblenden
3 cos( 2x + π) +2 = -1 | -2
3 cos( 2x + π) = -3 |:3
canvas
cos( 2x + π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + π = π | - π
2x = 0 |:2
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 cos( x + 1 2 π) = -1,5

Lösung einblenden
-2 cos( x + 1 2 π) = -1,5 |:-2
canvas
cos( x + 1 2 π) = 0,75 |cos-1(⋅)

Der WTR liefert nun als Wert 0.72273424781342

1. Fall:

x + 1 2 π = 0,723

oder

x + 1 2 π = 0,723 +2π |⋅ 2
2x + π = 1,446 +4π | - π
2x = 1,446 +3π
2x = 10,8708 |:2
x1 = 5,4354

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 1 2 π) = 0,75 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.75 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,723
bzw. bei - 0,723 +2π= 5,56 liegen muss.

2. Fall:

x + 1 2 π = 5,56 |⋅ 2
2( x + 1 2 π) = 11,12
2x + π = 11,12 | - π
2x = 11,12 - π
2x = 7,9784 |:2
x2 = 3,9892

L={ 3,9892 ; 5,4354 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) +3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -2 cos( 2x - π) +2 ) · cos( x ) = 0

Lösung einblenden
( -2 cos( 2x - π) +2 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-2 cos( 2x - π) +2 = 0 | -2
-2 cos( 2x - π) = -2 |:-2
canvas
cos( 2x - π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - π = 0 | + π
2x = π |:2
x1 = 1 2 π

Da -2 cos( 2x - π) +2 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 2 π + 1⋅ π = 3 2 π


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung! 3 2 π ist 2-fache Lösung!