nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,95

Lösung einblenden
canvas
sin( x ) = -0,95 |sin-1(⋅)

Der WTR liefert nun als Wert -1.2532358975034

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,03

1. Fall:

x1 = 5,03

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,95 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.95 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,03 =-1.8884 bzw. bei -1.8884+2π= 4,395 liegen muss.

2. Fall:

x2 = 4,395

L={ 4,395 ; 5,03 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( 2x + π) = -1

Lösung einblenden
canvas
cos( 2x + π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + π = π | - π
2x = 0 |:2
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
2 sin( 3x + 1 2 π) -1 = -1,7

Lösung einblenden
2 sin( 3x + 1 2 π) -1 = -1,7 | +1
2 sin( 3x + 1 2 π) = -0,7 |:2
canvas
sin( 3x + 1 2 π) = -0,35 |sin-1(⋅)

Der WTR liefert nun als Wert -0.35757110364551

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2 3 π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,926

1. Fall:

3x + 1 2 π = 5,926 |⋅ 2
2( 3x + 1 2 π) = 11,852
6x + π = 11,852 | - π
6x = 11,852 - π
6x = 8,7104 |:6
x1 = 1,4517

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 1 2 π) = -0,35 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,926 =-2.7844 bzw. bei -2.7844+2π= 3,499 liegen muss.

2. Fall:

3x + 1 2 π = 3,499 |⋅ 2
2( 3x + 1 2 π) = 6,998
6x + π = 6,998 | - π
6x = 6,998 - π
6x = 3,8564 |:6
x2 = 0,6427

L={ 0,6427 ; 1,4517 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Lösung einblenden
( cos( x ) ) 2 +4 cos( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · 3 21

u1,2 = -4 ± 16 -12 2

u1,2 = -4 ± 4 2

u1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

u2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -3

cos( x ) = -3

Diese Gleichung hat keine Lösung!

L={ π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( 3 cos( 2x + 1 2 π) -3 ) · ( x 3 -2 x 2 ) = 0

Lösung einblenden
( 3 cos( 2x + 1 2 π) -3 ) ( x 3 -2 x 2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

3 cos( 2x + 1 2 π) -3 = 0 | +3
3 cos( 2x + 1 2 π) = 3 |:3
canvas
cos( 2x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = 0

oder

2x + 1 2 π = 0+2π
2x + 1 2 π = 2π |⋅ 2
2( 2x + 1 2 π) = 4π
4x + π = 4π | - π
4x = 3π |:4
x1 = 3 4 π

2. Fall:

x 3 -2 x 2 = 0
x 2 ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x2 = 0

2. Fall:

x -2 = 0 | +2
x3 = 2

L={0; 2 ; 3 4 π }

0 ist 2-fache Lösung!