nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,45

Lösung einblenden
canvas
sin( x ) = -0,45 |sin-1(⋅)

Der WTR liefert nun als Wert -0.4667653390473

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,816

1. Fall:

x1 = 5,816

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,45 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.45 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,816 =-2.6744 bzw. bei -2.6744+2π= 3,608 liegen muss.

2. Fall:

x2 = 3,608

L={ 3,608 ; 5,816 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 cos( 3x + 1 2 π) +2 = 0

Lösung einblenden
2 cos( 3x + 1 2 π) +2 = 0 | -2
2 cos( 3x + 1 2 π) = -2 |:2
canvas
cos( 3x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x = 1 6 π

L={ 1 6 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ).
-2 cos( 3x - 1 2 π) = 0,8

Lösung einblenden
-2 cos( 3x - 1 2 π) = 0,8 |:-2
canvas
cos( 3x - 1 2 π) = -0,4 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9823131728624

1. Fall:

3x - 1 2 π = 1,982 |⋅ 2
2( 3x - 1 2 π) = 3,964
6x - π = 3,964 | + π
6x = 3,964 + π
6x = 7,1056 |:6
x1 = 1,1843

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 1 2 π) = -0,4 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.4 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,982
bzw. bei - 1,982 +2π= 4,301 liegen muss.

2. Fall:

3x - 1 2 π = 4,301 |⋅ 2
2( 3x - 1 2 π) = 8,602
6x - π = 8,602 | + π
6x = 8,602 + π
6x = 11,7436 |:6
x2 = 1,9573

L={ 1,1843 ; 1,9573 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 +3u +1 = 0 |: 2

u 2 + 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = - 3 4 ± 1 16

x1 = - 3 4 - 1 4 = - 4 4 = -1

x2 = - 3 4 + 1 4 = - 2 4 = -0.5

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 sin( x - π) -3 ) · ( sin( x ) -1 ) = 0

Lösung einblenden
( -3 sin( x - π) -3 ) ( sin( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 sin( x - π) -3 = 0 | +3
-3 sin( x - π) = 3 |:-3
canvas
sin( x - π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x - π = 3 2 π

oder

x - π = 3 2 π-2π
x - π = - 1 2 π | + π
x1 = 1 2 π

2. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π }

1 2 π ist 2-fache Lösung!