nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,35

Lösung einblenden
canvas
sin( x ) = -0,35 |sin-1(⋅)

Der WTR liefert nun als Wert -0.35757110364551

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,926

1. Fall:

x1 = 5,926

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,35 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,926 =-2.7844 bzw. bei -2.7844+2π= 3,499 liegen muss.

2. Fall:

x2 = 3,499

L={ 3,499 ; 5,926 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 3x + π) = 0

Lösung einblenden
- cos( 3x + π) = 0 |:-1
canvas
cos( 3x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + π = 1 2 π

oder

3x + π = 1 2 π+2π
3x + π = 5 2 π | - π
3x = 3 2 π |:3
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x + π = 3 2 π | - π
3x = 1 2 π |:3
x2 = 1 6 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
cos( x + 1 2 π) = 1

Lösung einblenden
canvas
cos( x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 0

oder

x + 1 2 π = 0+2π
x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x = 3 2 π

L={ 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) +3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x3 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x4 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x5 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x6 = 2,356

L={ 0,785 ; 1 2 π ; 2,356 ; 3,927 ; 3 2 π ; 5,498 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( 2 cos( 2x - π) +2 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( 2 cos( 2x - π) +2 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( 2x - π) +2 = 0 | -2
2 cos( 2x - π) = -2 |:2
canvas
cos( 2x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - π = π

oder

2x - π = π-2π
2x - π = -π | + π
2x = 0 |:2
x1 = 0

Da 2 cos( 2x - π) +2 die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 0 + 1⋅ π = π


2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 0

L={0; π }

0 ist 2-fache Lösung!