nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,15

Lösung einblenden
canvas
cos( x ) = -0,15 |cos-1(⋅)

Der WTR liefert nun als Wert 1.7213645995716

1. Fall:

x1 = 1,721

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,15 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.15 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,721
bzw. bei - 1,721 +2π= 4,562 liegen muss.

2. Fall:

x2 = 4,562

L={ 1,721 ; 4,562 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 2x - 1 2 π) = 2

Lösung einblenden
-2 cos( 2x - 1 2 π) = 2 |:-2
canvas
cos( 2x - 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 1 2 π = π |⋅ 2
2( 2x - 1 2 π) = 2π
4x - π = 2π | + π
4x = 3π |:4
x = 3 4 π

L={ 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
2 cos( x + 3 2 π) +3 = 2,6

Lösung einblenden
2 cos( x + 3 2 π) +3 = 2,6 | -3
2 cos( x + 3 2 π) = -0,4 |:2
canvas
cos( x + 3 2 π) = -0,2 |cos-1(⋅)

Der WTR liefert nun als Wert 1.7721542475852

1. Fall:

x + 3 2 π = 1,772

oder

x + 3 2 π = 1,772 +2π |⋅ 2
2x +3π = 3,544 +4π | -3π
2x = 3,544 + π
2x = 6,6856 |:2
x1 = 3,3428

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = -0,2 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.2 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,772
bzw. bei - 1,772 +2π= 4,511 liegen muss.

2. Fall:

x + 3 2 π = 4,511

oder

x + 3 2 π = 4,511 +2π |⋅ 2
2x +3π = 9,022 +4π | -3π
2x = 9,022 + π
2x = 12,1636 |:2
x2 = 6,0818

L={ 3,3428 ; 6,0818 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={ π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( 3x - 3 2 π) · sin( x ) = 0

Lösung einblenden
- sin( 3x - 3 2 π) · sin( x ) = 0
- sin( 3x - 3 2 π) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( 3x - 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 3 2 π = 0 |⋅ 2
2( 3x - 3 2 π) = 0
6x -3π = 0 | +3π
6x = 3π |:6
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x - 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x - 3 2 π = π

oder

3x - 3 2 π = π-2π
3x - 3 2 π = -π |⋅ 2
2( 3x - 3 2 π) = -2π
6x -3π = -2π | +3π
6x = π |:6
x2 = 1 6 π

Da sin( 3x - 3 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x3 = 1 2 π + 1⋅ 2 3 π = 7 6 π , x4 = 1 6 π + 1⋅ 2 3 π = 5 6 π
x5 = 1 2 π + 2⋅ 2 3 π = 11 6 π , x6 = 1 6 π + 2⋅ 2 3 π = 3 2 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x7 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x8 = π

L={0; 1 6 π ; 1 2 π ; 5 6 π ; π ; 7 6 π ; 3 2 π ; 11 6 π }