nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,35

Lösung einblenden
canvas
cos( x ) = -0,35 |cos-1(⋅)

Der WTR liefert nun als Wert 1.9283674304404

1. Fall:

x1 = 1,928

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,35 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,928
bzw. bei - 1,928 +2π= 4,355 liegen muss.

2. Fall:

x2 = 4,355

L={ 1,928 ; 4,355 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( 3x - π) -2 = -3

Lösung einblenden
sin( 3x - π) -2 = -3 | +2 canvas
sin( 3x - π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = 3 2 π

oder

3x - π = 3 2 π-2π
3x - π = - 1 2 π | + π
3x = 1 2 π |:3
x = 1 6 π

L={ 1 6 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-3 sin( 2x + 3 2 π) +2 = 3,8

Lösung einblenden
-3 sin( 2x + 3 2 π) +2 = 3,8 | -2
-3 sin( 2x + 3 2 π) = 1,8 |:-3
canvas
sin( 2x + 3 2 π) = -0,6 |sin-1(⋅)

Der WTR liefert nun als Wert -0.64350110879328

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,64

1. Fall:

2x + 3 2 π = 5,64 |⋅ 2
2( 2x + 3 2 π) = 11,28
4x +3π = 11,28 | -3π
4x = 11,28 -3π
4x = 1,8552 |:4
x1 = 0,4638

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = -0,6 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.6 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,64 =-2.4984 bzw. bei -2.4984+2π= 3,785 liegen muss.

2. Fall:

2x + 3 2 π = 3,785

oder

2x + 3 2 π = 3,785 +2π |⋅ 2
4x +3π = 7,57 +4π | -3π
4x = 7,57 + π
4x = 10,7116 |:4
x2 = 2,6779

L={ 0,4638 ; 2,6779 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = -4

cos( x ) = -4

Diese Gleichung hat keine Lösung!

L={0}

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x -3 ) · ( -2 sin( 2x - π) ) = 0

Lösung einblenden
( x -3 ) · ( -2 sin( 2x - π) ) = 0
-2 ( x -3 ) · sin( 2x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

canvas
sin( 2x - π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - π = 0 | + π
2x = π |:2
x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - π = π

oder

2x - π = π-2π
2x - π = -π | + π
2x = 0 |:2
x3 = 0

L={0; 1 2 π ; 3 }