nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Minus an der Zahlengerade

Beispiel:

Trage die richtige Zahl in das Kästchen über der Zahlengeraden statt des "?" ein.

Lösung einblenden

Man kann an der Zahlengerade eine Verschiebung um 19 nach links ablesen.

Um von 4 zu -15 zu gelangen, muss man somit 4 - 19 rechnen.

Die gesuchte Zahl ist somt: 19

Plus-Minus an der Zahlengerade

Beispiel:

Trage die richtige Zahl in das Kästchen über der Zahlengeraden statt des "?" ein.

Lösung einblenden

Man kann an der Zahlengerade eine Verschiebung um 10 nach links ablesen.

Um von -3 zu -13 zu gelangen, muss man somit -3 - 10 rechnen.

Die gesuchte Zahl ist somt: 10

Plus und Minus

Beispiel:

Berechne: -10 - 11

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

-10 - 11

Wir sehen am Zahlenstrahl, dass zu den 10 "Negativen" noch 11 weitere negative Einheiten weggehen.

Insgesamt geht's also (10 + 11) = 21 Einheiten nach links:

-10 - 11
= - (10 + 11)
= -21

Plus und Minus (3 Zahlen)

Beispiel:

Berechne: -9 - 12 + 7

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

-9 - 12 + 7

Wir sehen am Zahlenstrahl, dass zu den 9 "Negativen" noch 12 weitere negative Einheiten weggehen.

Insgesamt geht's also (9 + 12) = 21 Einheiten nach links:

-9 - 12
= - (9 + 12)
= -21

Jetzt müssen wir zu den -21 noch 7 addieren. Dazu müssen wir auf der Zahlengerade nochmals 7 nach rechts gehen und landen schließlich bei -14

-9 - 12 + 7 = -21 + 7 = -14.

Plus und Minus (mit Klammern)

Beispiel:

Berechne: -10 - (-7)

Lösung einblenden

Zuerst lösen wir die Klammer auf:

-10 - (-7) = -10+7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir sehen am Zahlenstrahl, dass von den 10 "Negativen" 7 positive Einheiten in die andere Richtung gehen, so dass man am Ende bei der Differenz der beiden Beträge landet. Und weil die negative Zahl -10 den größeren Betrag hat, ist das Ergebnis im negativen Bereich:

-10 + 7
= - (10 - 7)
= -3

Plus und Minus (rückwärts)

Beispiel:

Bestimme die Vorzeichen so, dass die Rechnung korrekt ist: ±16 + (±12) = 28.

Lösung einblenden

Wenn man die Klammer auflöst, müssen die beiden Zahlen das gleiche Vorzeichen haben, weil sonst ja bei verschiedenen Vorzeichen das Ergebnis was mit (16 - 12) = 4 wäre.

Und weil das Ergebnis ein positives Vorzeichen hat, müssen also auch beide Vorzeichen "+" sein:

Also +16+12 = 28

Jetzt muss man nur noch schauen, welches Vorzeichen die 12 braucht, damit gilt:
16 +12 = 16 + (±12)

Das funktioniert natürlich nur mit einem +:

+16 + (+12) = 28

Plus und Minus (mit Kästchen)

Beispiel:

Was muss in das Kästchen?
45 + ⬜ = 85

Lösung einblenden

45 + ⬜ = 85

Um von 45 auf 85 zu kommen, muss man doch 40 addieren (siehe Zahlenstrahl).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Kästchen muss also 40 sein

Plus und Minus verbal

Beispiel:

Subtrahiere von der Differenz von -15 und 3 die Zahl -5.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

(-15 - 3) - ( - 5 )

= -18 - ( - 5 )

= -18 + 5

= -13

erst Klammern ausrechnen

Beispiel:

Berechne zuerst die Klammer (wenn es eine gibt):
-20 + ( -27 -14 )

Lösung einblenden

-20 + ( -27 -14 )

Wir berechnen zuerst die Klammer

= -20 -41

= -61

Rechenvorteile Addition

Beispiel:

Berechne möglichst geschickt:
355 +145 -150

Lösung einblenden

355 +145 -150

Wir suchen zwei Summanden, die gut zusammen passen und berechnen zuerst die Summe der beiden passenden Summanden:

= 500 -150

= 350

Minus ausklammern

Beispiel:

Wähle die richtigen Rechenzeichen aus und berechne dann das Ergebnis:

-9 + ( 1 + 7 )

Lösung einblenden

-9 + ( 1 + 7 )

= -9 +1 +7

= -1

Minusklammer - Rechenvorteile

Beispiel:

Löse zuerst die Klammer auf und berechne dann möglichst geschickt:
( -1010 +640 ) + 10

Lösung einblenden

( -1010 +640 ) + 10

Wir lösen zuerst die Klammer auf.
Weil ja ein "+" vor der Klammer steht, können wir sie einfach weglassen.

-1010 +640 +10

Jetzt suchen wir zwei Summanden, die gut zusammen passen, ändern entsprechend die Reihenfolge und berechnen zuerst die Summe der beiden passenden Summanden:

= -1010 +10 +640

= -1000 +640

= -360

Wegstrecken modellieren

Beispiel:

Patrick fährt mit dem Fahrrad von Winkelburg nach Quadratshausen (Entfernung 193 km). In Kreislingen macht er eine kurze Pause und fährt anschließend noch 49 km bis Quadratshausen. Berechne, nach welcher Strecke Patrick eine Pause einlegt.

Überlege dir mit welchen Zahlen du die drei Orte auf dem Zahlenstrahl beschriften könntest.

Lösung einblenden

Wenn wir die Zahlengerade mit dem Ziel Quadratshausen als 0 beschriften, muss doch der Ausgangspunkt Winkelburg mit -193 beschriftet werden, weil ja die ganze Strecke 193 km lang ist.

Da die Pause-Station Kreislingen ja 49 km vor dem Ziel ist, muss diese mit -49 beschriftet werden.

Um nun die Strecke von Winkelburg (bei -193) bis Kreislingen (bei -49) zu berechnen, können wir ja einfach die - wie immer an der Zahlengerade - die rechte Zahl minus die linke Zahl rechnen:

also -49 - (-193) = -49 + 193 = 144

Die gesuchte Entfernung ist also 144 km.