Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
y-Wert aus Graph ablesen (mit f(x))
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=-4 der (in der Abbildung rechts rote) Punkt (-4|f(-4)) auf der Höhe y=-1 liegt.
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)= , g mit g(x)= , h mit h(x)= .
Sortiere die drei Funktionswerte -f(-1.7), g(-1.7) und h(-1.7), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- -f(-1.7) = - < 0
- g(-1.7) = < 0
- h(-1.7) = > 0
Da h(-1.7) der einzige positive Funktionswert ist, muss dieser also der größte sein.
Und weil die anderen beiden Werte negativ sind, schauen wir zunächst nur auf die Beträge:
Dabei gilt -f(-1.7) > g(-1.7). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
1.73 =1.72 ⋅ 1.7, d.h. 1.73 > 1.72, also gilt - 1.73 < - 1.72.
Die richtige Reihenfolge ist also:
g(-1.7)=
< -f(-1.7)= -
< h(-1.7)=
.
x-Wert am Graph ablesen
Beispiel:
Da die Funktionswerte f(x) immer auf der y-Achse abgetragen werden, muss der gesuchte Punkt auf dem Graph 2.6 unter der x-Achse liegen. Alle Punkte mit dieser Eigenschaft sind durch die blaue Gerade im Schaubild veranschaulicht.
So erkennt man nun, dass z.B. an der Stelle x = 0 gerade ein (in der Abbildung rechts roter) Punkt auf dem Graph liegt, der als y-Wert ( und damit als Funktionswert f(x)) -2.6 hat.
Also ist beispielweise bei x = 0 solch eine Stelle mit f(0) = -2.6.
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)= . Berechne den Funktionswert f(-2).
Wir setzen -2 einfach für x in f(x)= ein:
f(-2) =
=
=
=
=
