Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
y-Wert aus Graph ablesen (mit f(x))
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=-1 der (in der Abbildung rechts rote) Punkt (-1|f(-1)) auf der Höhe y=3.7 liegt.
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)= , g mit g(x)= , h mit h(x)= .
Sortiere die drei Funktionswerte -f(-0.9), -g(0.9) und h(-0.9), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- -f(-0.9) = - < 0
- -g(0.9) = - < 0
- h(-0.9) = > 0
Da h(-0.9) der einzige positive Funktionswert ist, muss dieser also der größte sein.
Und weil die anderen beiden Werte negativ sind, schauen wir zunächst nur auf die Beträge:
Dabei gilt -f(-0.9) < -g(0.9). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
0.93 =0.92 ⋅ 0.9, d.h. 0.93 < 0.92, also gilt - 0.93 > - 0.92.
Die richtige Reihenfolge ist also:
-f(-0.9)= -
< -g(0.9)= -
< h(-0.9)=
.
x-Wert am Graph ablesen
Beispiel:
Da die Funktionswerte f(x) immer auf der y-Achse abgetragen werden, muss der gesuchte Punkt auf dem Graph 2.3 unter der x-Achse liegen. Alle Punkte mit dieser Eigenschaft sind durch die blaue Gerade im Schaubild veranschaulicht.
So erkennt man nun, dass z.B. an der Stelle x = -2 gerade ein (in der Abbildung rechts roter) Punkt auf dem Graph liegt, der als y-Wert ( und damit als Funktionswert f(x)) -2.3 hat.
Also ist beispielweise bei x = -2 solch eine Stelle mit f(-2) = -2.3.
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)= . Berechne den Funktionswert f(-1).
Wir setzen -1 einfach für x in f(x)= ein:
f(-1) =
=
=