nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +22x +36 = 0

Lösung einblenden
2 x 2 +22x +36 = 0 |:2

x 2 +11x +18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -11 ± 11 2 -4 · 1 · 18 21

x1,2 = -11 ± 121 -72 2

x1,2 = -11 ± 49 2

x1 = -11 + 49 2 = -11 +7 2 = -4 2 = -2

x2 = -11 - 49 2 = -11 -7 2 = -18 2 = -9

L={ -9 ; -2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

14x + x 2 +40 = 0

Lösung einblenden

x 2 +14x +40 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -14 ± 14 2 -4 · 1 · 40 21

x1,2 = -14 ± 196 -160 2

x1,2 = -14 ± 36 2

x1 = -14 + 36 2 = -14 +6 2 = -8 2 = -4

x2 = -14 - 36 2 = -14 -6 2 = -20 2 = -10

L={ -10 ; -4 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

3 x 2 +54x +243 = 0

Lösung einblenden
3 x 2 +54x +243 = 0 |:3

x 2 +18x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 1 · 81 21

x1,2 = -18 ± 324 -324 2

x1,2 = -18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -18 2 = -9

L={ -9 }

-9 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 +6x -6 = ( 8x -4 ) ( x -3 ) +41x -30

Lösung einblenden
9 x 2 +6x -6 = ( 8x -4 ) ( x -3 ) +41x -30
9 x 2 +6x -6 = 8 x 2 -28x +12 +41x -30
9 x 2 +6x -6 = 8 x 2 +13x -18 | -8 x 2 -13x +18

x 2 -7x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

L={ 3 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -12x -18 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -12x -18 = 0 |:2

- x 2 -6x -9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · ( -1 ) · ( -9 ) 2( -1 )

x1,2 = +6 ± 36 -36 -2

x1,2 = +6 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 -2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -3 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 -4x -7
und
g(x)= 5 x 2 -5x +5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 -4x -7 = 5 x 2 -5x +5 | -5 x 2 +5x -5

x 2 + x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

L={ -4 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = 5 ( -4 ) 2 -5( -4 ) +5 = 516 +20 +5 = 80 +20 +5 = 105

g( 3 ) = 5 3 2 -53 +5 = 59 -15 +5 = 45 -15 +5 = 35

Die Schnittpunkte sind also S1( -4 | 105 ) und S2( 3 | 35 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +2x +9 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +0 ) · ( x -2 ) = - x 2 +2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x = -2 x 2 +2x +9 | +2 x 2 -2x
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -2 ( -3 ) 2 +2( -3 ) +9 = -29 -6 +9 = -18 -6 +9 = -15

g( 3 ) = -2 3 2 +23 +9 = -29 +6 +9 = -18 +6 +9 = -3

Die Schnittpunkte sind also S1( -3 | -15 ) und S2( 3 | -3 ).