nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +21x +49 = 0

Lösung einblenden

2 x 2 +21x +49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -21 ± 21 2 -4 · 2 · 49 22

x1,2 = -21 ± 441 -392 4

x1,2 = -21 ± 49 4

x1 = -21 + 49 4 = -21 +7 4 = -14 4 = -3,5

x2 = -21 - 49 4 = -21 -7 4 = -28 4 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +21x +49 = 0 |: 2

x 2 + 21 2 x + 49 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 21 4 ) 2 - ( 49 2 ) = 441 16 - 49 2 = 441 16 - 392 16 = 49 16

x1,2 = - 21 4 ± 49 16

x1 = - 21 4 - 7 4 = - 28 4 = -7

x2 = - 21 4 + 7 4 = - 14 4 = -3.5

L={ -7 ; -3,5 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 -60 -4x = 0

Lösung einblenden

x 2 -4x -60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -60 ) 21

x1,2 = +4 ± 16 +240 2

x1,2 = +4 ± 256 2

x1 = 4 + 256 2 = 4 +16 2 = 20 2 = 10

x2 = 4 - 256 2 = 4 -16 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -60 ) = 4+ 60 = 64

x1,2 = 2 ± 64

x1 = 2 - 8 = -6

x2 = 2 + 8 = 10

L={ -6 ; 10 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 -12x +32 = 0

Lösung einblenden

x 2 -12x +32 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 32 21

x1,2 = +12 ± 144 -128 2

x1,2 = +12 ± 16 2

x1 = 12 + 16 2 = 12 +4 2 = 16 2 = 8

x2 = 12 - 16 2 = 12 -4 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 32 = 36 - 32 = 4

x1,2 = 6 ± 4

x1 = 6 - 2 = 4

x2 = 6 + 2 = 8

L={ 4 ; 8 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-2 x 2 +8x -5 = ( -3x +4 ) ( x +7 ) +20x -39

Lösung einblenden
-2 x 2 +8x -5 = ( -3x +4 ) ( x +7 ) +20x -39
-2 x 2 +8x -5 = -3 x 2 -17x +28 +20x -39
-2 x 2 +8x -5 = -3 x 2 +3x -11 | +3 x 2 -3x +11

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

L={ -3 ; -2 }

Nullstellen (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -2x +84 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -2x +84 = 0 |:2

- x 2 - x +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 42 2( -1 )

x1,2 = +1 ± 1 +168 -2

x1,2 = +1 ± 169 -2

x1 = 1 + 169 -2 = 1 +13 -2 = 14 -2 = -7

x2 = 1 - 169 -2 = 1 -13 -2 = -12 -2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +42 = 0 |: -1

x 2 + x -42 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -42 ) = 1 4 + 42 = 1 4 + 168 4 = 169 4

x1,2 = - 1 2 ± 169 4

x1 = - 1 2 - 13 2 = - 14 2 = -7

x2 = - 1 2 + 13 2 = 12 2 = 6

L={ -7 ; 6 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -7 |0) und N2( 6 |0).

Schnittpunkte (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 -10x +6
und
g(x)= 5 x 2 -5x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 -10x +6 = 5 x 2 -5x +2 | -5 x 2 +5x -2

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

L={ 1 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = 5 1 2 -51 +2 = 51 -5 +2 = 5 -5 +2 = 2

g( 4 ) = 5 4 2 -54 +2 = 516 -20 +2 = 80 -20 +2 = 62

Die Schnittpunkte sind also S1( 1 | 2 ) und S2( 4 | 62 ).

Schnittpunkte (Term und Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 5 3 x +11 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 3 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 3 .

Der Term der abgebildeten Geraden ist also y= - 1 3 x +3 oder f(x)= - 1 3 x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 3 x +3 = - x 2 + 5 3 x +11 |⋅ 3
3( - 1 3 x +3 ) = 3( - x 2 + 5 3 x +11 )
-x +9 = -3 x 2 +5x +33 | +3 x 2 -5x -33
3 x 2 -6x -24 = 0 |:3

x 2 -2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

L={ -2 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 + 5 3 ( -2 ) +11 = -4 - 10 3 +11 = 11 3

g( 4 ) = - 4 2 + 5 3 4 +11 = -16 + 20 3 +11 = 5 3

Die Schnittpunkte sind also S1( -2 | 11 3 ) und S2( 4 | 5 3 ).