nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -9x +10 = 0

Lösung einblenden

2 x 2 -9x +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 2 · 10 22

x1,2 = +9 ± 81 -80 4

x1,2 = +9 ± 1 4

x1 = 9 + 1 4 = 9 +1 4 = 10 4 = 2,5

x2 = 9 - 1 4 = 9 -1 4 = 8 4 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -9x +10 = 0 |: 2

x 2 - 9 2 x +5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 4 ) 2 - 5 = 81 16 - 5 = 81 16 - 80 16 = 1 16

x1,2 = 9 4 ± 1 16

x1 = 9 4 - 1 4 = 8 4 = 2

x2 = 9 4 + 1 4 = 10 4 = 2.5

L={ 2 ; 2,5 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

5 x 2 -37x = -42

Lösung einblenden
5 x 2 -37x = -42 | +42

5 x 2 -37x +42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +37 ± ( -37 ) 2 -4 · 5 · 42 25

x1,2 = +37 ± 1369 -840 10

x1,2 = +37 ± 529 10

x1 = 37 + 529 10 = 37 +23 10 = 60 10 = 6

x2 = 37 - 529 10 = 37 -23 10 = 14 10 = 1,4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -37x +42 = 0 |: 5

x 2 - 37 5 x + 42 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 37 10 ) 2 - ( 42 5 ) = 1369 100 - 42 5 = 1369 100 - 840 100 = 529 100

x1,2 = 37 10 ± 529 100

x1 = 37 10 - 23 10 = 14 10 = 1.4

x2 = 37 10 + 23 10 = 60 10 = 6

L={ 1,4 ; 6 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +60x -303 = 0

Lösung einblenden
-3 x 2 +60x -303 = 0 |:3

- x 2 +20x -101 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -20 ± 20 2 -4 · ( -1 ) · ( -101 ) 2( -1 )

x1,2 = -20 ± 400 -404 -2

x1,2 = -20 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +20x -101 = 0 |: -1

x 2 -20x +101 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -10 ) 2 - 101 = 100 - 101 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

- x 2 -9x +9 = ( -2x -3 ) ( x -1 ) -4x +11

Lösung einblenden
- x 2 -9x +9 = ( -2x -3 ) ( x -1 ) -4x +11
- x 2 -9x +9 = -2 x 2 - x +3 -4x +11
- x 2 -9x +9 = -2 x 2 -5x +14 | +2 x 2 +5x -14

x 2 -4x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

x1,2 = +4 ± 16 +20 2

x1,2 = +4 ± 36 2

x1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

x2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -5 ) = 4+ 5 = 9

x1,2 = 2 ± 9

x1 = 2 - 3 = -1

x2 = 2 + 3 = 5

L={ -1 ; 5 }

Nullstellen (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -3 x 2 -48x -192 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-3 x 2 -48x -192 = 0 |:3

- x 2 -16x -64 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +16 ± ( -16 ) 2 -4 · ( -1 ) · ( -64 ) 2( -1 )

x1,2 = +16 ± 256 -256 -2

x1,2 = +16 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 16 -2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -16x -64 = 0 |: -1

x 2 +16x +64 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 64 = 64 - 64 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -8 ± 0 = -8

L={ -8 }

-8 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -8 |0).

Schnittpunkte (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 +9x +2
und
g(x)= -3 x 2 +5x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 +9x +2 = -3 x 2 +5x -3 | +3 x 2 -5x +3

x 2 +4x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 5 21

x1,2 = -4 ± 16 -20 2

x1,2 = -4 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 5 = 4 - 5 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte (Term und Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +10x -17 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x +3 oder f(x)= x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +3 = - x 2 +10x -17 | + x 2 -10x +17

x 2 -9x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = 9 2 ± 1 4

x1 = 9 2 - 1 2 = 8 2 = 4

x2 = 9 2 + 1 2 = 10 2 = 5

L={ 4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = - 4 2 +104 -17 = -16 +40 -17 = 7

g( 5 ) = - 5 2 +105 -17 = -25 +50 -17 = 8

Die Schnittpunkte sind also S1( 4 | 7 ) und S2( 5 | 8 ).