nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -2x -24 = 0

Lösung einblenden
2 x 2 -2x -24 = 0 |:2

x 2 - x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

L={ -3 ; 4 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2 +4 x 2 = 9x

Lösung einblenden
4 x 2 +2 = 9x | -9x

4 x 2 -9x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 4 · 2 24

x1,2 = +9 ± 81 -32 8

x1,2 = +9 ± 49 8

x1 = 9 + 49 8 = 9 +7 8 = 16 8 = 2

x2 = 9 - 49 8 = 9 -7 8 = 2 8 = 0,25

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -9x +2 = 0 |: 4

x 2 - 9 4 x + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 8 ) 2 - ( 1 2 ) = 81 64 - 1 2 = 81 64 - 32 64 = 49 64

x1,2 = 9 8 ± 49 64

x1 = 9 8 - 7 8 = 2 8 = 0.25

x2 = 9 8 + 7 8 = 16 8 = 2

L={ 0,25 ; 2 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 + x -20 = 0

Lösung einblenden

x 2 + x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

x1,2 = -1 ± 1 +80 2

x1,2 = -1 ± 81 2

x1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

x2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

L={ -5 ; 4 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -6x +5 = ( -3x +7 ) ( x +7 ) +9x -44

Lösung einblenden
-2 x 2 -6x +5 = ( -3x +7 ) ( x +7 ) +9x -44
-2 x 2 -6x +5 = -3 x 2 -14x +49 +9x -44
-2 x 2 -6x +5 = -3 x 2 -5x +5 | -5
-2 x 2 -6x = -3 x 2 -5x | - ( -3 x 2 -5x )
-2 x 2 +3 x 2 -6x +5x = 0
x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Nullstellen (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -26x -72 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -26x -72 = 0 |:2

- x 2 -13x -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +13 ± ( -13 ) 2 -4 · ( -1 ) · ( -36 ) 2( -1 )

x1,2 = +13 ± 169 -144 -2

x1,2 = +13 ± 25 -2

x1 = 13 + 25 -2 = 13 +5 -2 = 18 -2 = -9

x2 = 13 - 25 -2 = 13 -5 -2 = 8 -2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -13x -36 = 0 |: -1

x 2 +13x +36 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 13 2 ) 2 - 36 = 169 4 - 36 = 169 4 - 144 4 = 25 4

x1,2 = - 13 2 ± 25 4

x1 = - 13 2 - 5 2 = - 18 2 = -9

x2 = - 13 2 + 5 2 = - 8 2 = -4

L={ -9 ; -4 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -9 |0) und N2( -4 |0).

Schnittpunkte (mit Lösungsformel)

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - x 2 +3x -16
und
g(x)= -2 x 2 +5x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +3x -16 = -2 x 2 +5x -1 | +2 x 2 -5x +1

x 2 -2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

L={ -3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -2 ( -3 ) 2 +5( -3 ) -1 = -29 -15 -1 = -18 -15 -1 = -34

g( 5 ) = -2 5 2 +55 -1 = -225 +25 -1 = -50 +25 -1 = -26

Die Schnittpunkte sind also S1( -3 | -34 ) und S2( 5 | -26 ).

Schnittpunkte (Term und Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 20 3 x -13 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 3 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 3 .

Der Term der abgebildeten Geraden ist also y= - 1 3 x -1 oder f(x)= - 1 3 x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 3 x -1 = - x 2 + 20 3 x -13 |⋅ 3
3( - 1 3 x -1 ) = 3( - x 2 + 20 3 x -13 )
-x -3 = -3 x 2 +20x -39 | +3 x 2 -20x +39
3 x 2 -21x +36 = 0 |:3

x 2 -7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 + 20 3 3 -13 = -9 +20 -13 = -2

g( 4 ) = - 4 2 + 20 3 4 -13 = -16 + 80 3 -13 = - 7 3

Die Schnittpunkte sind also S1( 3 | -2 ) und S2( 4 | - 7 3 ).