nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -17x -9 = 0

Lösung einblenden

2 x 2 -17x -9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +17 ± ( -17 ) 2 -4 · 2 · ( -9 ) 22

x1,2 = +17 ± 289 +72 4

x1,2 = +17 ± 361 4

x1 = 17 + 361 4 = 17 +19 4 = 36 4 = 9

x2 = 17 - 361 4 = 17 -19 4 = -2 4 = -0,5

L={ -0,5 ; 9 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

37 +25 x 2 = -60x

Lösung einblenden
25 x 2 +37 = -60x | +60x

25 x 2 +60x +37 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -60 ± 60 2 -4 · 25 · 37 225

x1,2 = -60 ± 3600 -3700 50

x1,2 = -60 ± ( -100 ) 50

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -4x +4 = 0

Lösung einblenden

x 2 -4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

L={ 2 }

2 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-5x +4 = ( -x +7 ) ( x -8 ) -23x +64

Lösung einblenden
-5x +4 = ( -x +7 ) ( x -8 ) -23x +64
-5x +4 = ( -x +7 ) ( x -8 ) -23x +64
-5x +4 = -23x +64 - x · x +8x +7x -56
-5x +4 = - x 2 -8x +8 | + x 2 +8x -8

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +5x -6 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +5x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

x1,2 = -5 ± 25 +24 2

x1,2 = -5 ± 49 2

x1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

x2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

L={ -6 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -6 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - x 2 +9x +9
und
g(x)= -2 x 2 +5x +5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +9x +9 = -2 x 2 +5x +5 | +2 x 2 -5x -5

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -2 ( -2 ) 2 +5( -2 ) +5 = -24 -10 +5 = -8 -10 +5 = -13

Der einzige Schnittpunkt ist also S( -2 | -13 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 4x -4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 1.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -1 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +1 ) · ( x -1 ) = x 2 -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -1 = 4x -4 | -4x +4

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={ 1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = 41 -4 = 4 -4 = 0

g( 3 ) = 43 -4 = 12 -4 = 8

Die Schnittpunkte sind also S1( 1 |0) und S2( 3 | 8 ).