nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 20 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 4 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 16 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=16 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2516 (Y4) ≈ 0.6302.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2516 (Y4) = 0.3164 ⋅ 0.6302 ≈ 0.1994

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 94% und im Stehen 88%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=4) = ( 5 4 ) 0.944 0.061 ≈ 0.2342
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=5) = ( 5 5 ) 0.885 0.120 ≈ 0.5277
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2342 ⋅ 0.5277 = 0.12358734

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=5) = ( 5 5 ) 0.945 0.060 ≈ 0.7339
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=4) = ( 5 4 ) 0.884 0.121 ≈ 0.3598
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7339 ⋅ 0.3598 = 0.26405722

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=5) = ( 5 5 ) 0.945 0.060 ≈ 0.7339
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=5) = ( 5 5 ) 0.885 0.120 ≈ 0.5277
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7339 ⋅ 0.5277 = 0.38727903


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1236 + 0.2641 + 0.3873 = 0.7749

feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 55%. Es wird 6 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 6 Versuchen mit der Formel von Bernoulli berechnen: ( 6 4 ) 0.55 4 0.45 2

Dabei gibt ja 0.55 4 0.45 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 2 Nicht-Treffern und ( 6 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 6 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOO

OXXXXO

OOXXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.55 4 0.45 2 ≈ 0.0556

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 13% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 103 Tickets für ihr Flugzeug mit 94 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=103 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 94 Treffer bei 103 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.87, also P0.87103 (X94)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=103 und p=0.87.

P0.87103 (X94) = P0.87103 (X=0) + P0.87103 (X=1) + P0.87103 (X=2) +... + P0.87103 (X=94) = 0.93078477775532 ≈ 0.9308
(TI-Befehl: binomcdf(103,0.87,94))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9308) und 'überbucht'(p=0.0692).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,8064
nicht überbucht -> nicht überbucht -> überbucht0,06
nicht überbucht -> überbucht -> nicht überbucht0,06
nicht überbucht -> überbucht -> überbucht0,0045
überbucht -> nicht überbucht -> nicht überbucht0,06
überbucht -> nicht überbucht -> überbucht0,0045
überbucht -> überbucht -> nicht überbucht0,0045
überbucht -> überbucht -> überbucht0,0003

Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=0,9308; P("überbucht")=0,0692;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,8064)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,06)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,06)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,06)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,8064 + 0,06 + 0,06 + 0,06 = 0,9863