- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 25 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 4 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.3164.
Analog betrachten wir nun die restlichen 21 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=21 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.3674.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.3164 ⋅ 0.3674 ≈ 0.1162
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 55 und am Samstag bei 40 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 34 am Samstag so zwischen 22 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 62% höher als am Freitag mit 46%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=55 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 34 Treffer bei 55 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.46 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9936 - 0.872 ≈ 0.1216 berechnen.
TI-Befehl: binomcdf(55,0.46,34)- binomcdf(55,0.46,29)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=40 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 22 und 32 Treffer bei 40 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.62 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9956 - 0.1415 ≈ 0.8541 berechnen.
TI-Befehl: binomcdf(40,0.62,32)- binomcdf(40,0.62,21)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.1216 ⋅ 0.8541 ≈ 0.1039
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 5 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXXOOOOO
OXXXXXOOOO
OOXXXXXOOO
OOOXXXXXOO
OOOOXXXXXO
OOOOOXXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 6 ⋅ ⋅ ≈ 0.0025
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 6% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.06, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.06.
= + + = 0.41624647241187 ≈ 0.4162(TI-Befehl: binomcdf(50,0.06,2))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.4162) und 'nicht ok'(p=0.5838).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
Ereignis | P |
---|---|
kiste ok -> kiste ok | |
kiste ok -> nicht ok | |
nicht ok -> kiste ok | |
nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok: ; nicht ok: ;
Die relevanten Pfade sind:- 'kiste ok'-'kiste ok' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=