nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,45. Es wird 80 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:
Von den ersten 5 Versuchen landen genau 2 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 40 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 5 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=5 und p=0.45.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.455 (X=2) ≈ 0.3369.

Analog betrachten wir nun die restlichen 75 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=75 und p=0.45.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.4575 (Y40) = 1- P0.4575 (Y39) ≈ 0.0913.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.455 (X=2) P0.4575 (Y40) = 0.3369 ⋅ 0.0913 ≈ 0.0308

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 92% und im Stehen 88%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=4) = ( 5 4 ) 0.924 0.081 ≈ 0.2866
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=5) = ( 5 5 ) 0.885 0.120 ≈ 0.5277
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2866 ⋅ 0.5277 = 0.15123882

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=5) = ( 5 5 ) 0.925 0.080 ≈ 0.6591
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=4) = ( 5 4 ) 0.884 0.121 ≈ 0.3598
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6591 ⋅ 0.3598 = 0.23714418

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=5) = ( 5 5 ) 0.925 0.080 ≈ 0.6591
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.

P0.885 (X=5) = ( 5 5 ) 0.885 0.120 ≈ 0.5277
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6591 ⋅ 0.5277 = 0.34780707


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1512 + 0.2371 + 0.3478 = 0.7362

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 6 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 6 Versuchen mit der Formel von Bernoulli berechnen: ( 6 4 ) 0.7 4 0.3 2

Dabei gibt ja 0.7 4 0.3 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 2 Nicht-Treffern und ( 6 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 6 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOO

OXXXXO

OOXXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.7 4 0.3 2 ≈ 0.0648

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 88% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.88.

Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.88,
also P0.8820 (X18) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.8820 (X18) = 1 - P0.8820 (X17)

≈ 1 - 0.4369 ≈ 0.5631 (TI-Befehl: 1-binompdf(20,0.88,17))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.5631) und 'zu wenig'(p=0.4369).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0.31708161
genügend Treffer -> zu wenig0.24601839
zu wenig -> genügend Treffer0.24601839
zu wenig -> zu wenig0.19088161

Einzel-Wahrscheinlichkeiten: genügend Treffer: 0.5631; zu wenig: 0.4369;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'genügend Treffer'-'zu wenig' (P=0.24601839)
'zu wenig'-'genügend Treffer' (P=0.24601839)
'genügend Treffer'-'genügend Treffer' (P=0.31708161)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.24601839 + 0.24601839 + 0.31708161 = 0.80911839