Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 29 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 12 Mädchen genau 2 einen Glückskeks mit einer Peperoni und von den Jungs genau 1 einen Glückskeks mit einer Peperoni erwischen .
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 12
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=12 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2713.
Analog betrachten wir nun die restlichen 17 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=17 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.2509.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2713 ⋅ 0.2509 ≈ 0.0681
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 30%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:
- 0 mal unten und 3 mal oben
- 1 mal unten und 2 mal oben
- 2 mal unten und 1 mal oben
- 3 mal unten und 0 mal oben
0 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 0 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.064Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.
= ≈ 0.027Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.064 ⋅ 0.027 = 0.001728
1 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.288Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.
= ≈ 0.189Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.189 = 0.054432
2 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.432Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.
= ≈ 0.441Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.432 ⋅ 0.441 = 0.190512
3 mal unten und 0 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.216Die Wahrscheinlichkeit für 0 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.
= ≈ 0.343Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.216 ⋅ 0.343 = 0.074088
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:
0.0017 + 0.0544 + 0.1905 + 0.0741 = 0.3208
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 7 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 2 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXXOO
OXXXXXO
OOXXXXX
Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 3 ⋅ ⋅ ≈ 0.0454
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 10% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 107 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 107 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.9, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und p=0.9.
= + + +... + = 0.18089176395703 ≈ 0.1809(TI-Befehl: binomcdf(107,0.9,93))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.1809) und 'überbucht'(p=0.8191).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=; P("überbucht")=;
Die relevanten Pfade sind:- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
- 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
- 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
- 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
