nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 25 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 5 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 21 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=21 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2521 (Y5) ≈ 0.5666.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2521 (Y5) = 0.3164 ⋅ 0.5666 ≈ 0.1793

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:

  • 1 mal unten und 3 mal oben
  • 2 mal unten und 2 mal oben
  • 3 mal unten und 1 mal oben

1 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=3) = ( 3 3 ) 0.23 0.80 ≈ 0.008
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.432 ⋅ 0.008 = 0.003456

2 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.096 = 0.027648

3 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.064 ⋅ 0.384 = 0.024576


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0035 + 0.0276 + 0.0246 = 0.0557

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 15% wirft 6 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 6 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 6 Versuchen mit der Formel von Bernoulli berechnen: ( 6 5 ) 0.15 5 0.85 1

Dabei gibt ja 0.15 5 0.85 1 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 1 Nicht-Treffern und ( 6 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 6 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXO

OXXXXX

Es gibt also genau 2 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 2 ⋅ 0.15 5 0.85 1 ≈ 0.0001

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 15 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 84% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für mindestens 15 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.84,
also P0.8420 (X15) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.8420 (X15) = 1 - P0.8420 (X14)

≈ 1 - 0.087 ≈ 0.913 (TI-Befehl: 1-binomcdf(20,0.84,14))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.913) und 'zu wenig'(p=0.087).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0,8336
genügend Treffer -> zu wenig0,0794
zu wenig -> genügend Treffer0,0794
zu wenig -> zu wenig0,0076

Einzel-Wahrscheinlichkeiten: P("genügend Treffer")=0,913; P("zu wenig")=0,087;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'genügend Treffer'-'zu wenig' (P=0,0794)
  • 'zu wenig'-'genügend Treffer' (P=0,0794)
  • 'genügend Treffer'-'genügend Treffer' (P=0,8336)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,0794 + 0,0794 + 0,8336 = 0,9924