Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 1): Dreiecksfläche I1 = = = 0.5.
I2 (von 1 bis 4):
Rechtecksfläche I2 = (4 - 1) ⋅
I3 (von 4 bis 5):
Trapezfläche I3 = (5 - 4) ⋅
= 1 ⋅
I4 (von 5 bis 6):
Rechtecksfläche I4 = (6 - 5) ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 gilt somit:
Iges = 0.5
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 3.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 gilt somit:
Iges = 6
Da zu Begin ja bereits 57 cm vorhanden waren, sind es nun nach 6 s
I6 = 57 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -2.
I3 (von 5 bis 8): Dreiecksfläche I3 = = = 6.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 gilt somit:
Iges = -6
Da ja nach 8 Sekunden 79 Liter vorhanden sind, und zwischen t=0 und t=8 insgesamt -2 Liter dazu, also 2 Liter weg kam,
müssen es zu Beginn
Istart =
79 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 6.
Somit nimmt der Bestand bis t=3 um 6 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=3 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 31 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 6): Dreiecksfläche I2 = = = -1.5.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 37 Personen
Da dies nicht weniger ist als zu Beginn der Beobachtung (31 Personen), ist der minimale Bestand (Personen auf dem Festivalgelände) der Startwert:
Bmin = 31 Personen
