nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Integrale graphisch BF

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Geschwindigkeit einer Modelleisenbahn (f(t) in cm/s, t in Sekunden nach Beobachtungsbeginn). Wie weit (in cm) ist die Modelleisenbahn zwischen t=0 Sekunden und t=8 Sekunden gefahren?

Lösung einblenden

Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 2): Rechtecksfläche I1 = (2 - 0) ⋅ 4 = 2 ⋅ 4 = 8.

I2 (von 2 bis 5): Dreiecksfläche I2 = (5 - 2) ⋅ 4 2 = 12 2 = 6.

I3 (von 5 bis 8): keine Fläche in diesem Abschnitt, also I = 0.

Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 8 gilt somit:

Iges = 8 +6 +0 = 14

Integrale graphisch BF (mit Startwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Zu Beginn der Beobachtung (t=0) sind 64m³ Wasser im Tank. Wie viel Wasser ist nach 10 Minuten im Tank?

Lösung einblenden

Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 2): Rechtecksfläche I1 = (2 - 0) ⋅ ( - 2 ) = 2 ⋅ ( - 2 ) = -4.

I2 (von 2 bis 5): Dreiecksfläche I2 = (5 - 2) ⋅ ( - 2 ) 2 = -6 2 = -3.

I3 (von 5 bis 7): Dreiecksfläche I3 = (7 - 5) ⋅ 3 2 = 6 2 = 3.

I4 (von 7 bis 10): Rechtecksfläche I4 = (10 - 7) ⋅ 3 = 3 ⋅ 3 = 9.

Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 10 gilt somit:

Iges = -4 -3 +3 +9 = 5

Da zu Begin ja bereits 64 m³ vorhanden waren, sind es nun nach 10 min
I10 = 64 m³ +5 m³ = 69 m³ .

Integrale graphisch BF (mit Endwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in l/s, t in Sekunden nach Beobachtungsbeginn). Nach 8 Sekunden sind 57 Liter Wasser im Tank. Wie viel Wasser war zu Beginn der Beobachtung (t=0) im Tank?

Lösung einblenden

Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 3): Rechtecksfläche I1 = (3 - 0) ⋅ ( - 3 ) = 3 ⋅ ( - 3 ) = -9.

I2 (von 3 bis 6): Dreiecksfläche I2 = (6 - 3) ⋅ ( - 3 ) 2 = -9 2 = -4.5.

I3 (von 6 bis 8): Dreiecksfläche I3 = (8 - 6) ⋅ 4 2 = 8 2 = 4.

Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 gilt somit:

Iges = -9 -4.5 +4 = -9.5

Da ja nach 8 Sekunden 57 Liter vorhanden sind, und zwischen t=0 und t=8 insgesamt -9.5 Liter dazu, also 9.5 Liter weg kam, müssen es zu Beginn
Istart = 57 Liter - ( - 9.5 ) Liter = 66.5 Liter gewesen sein.

Min. und Maximum bei graph. Integral

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Zu Beginn der Beobachtung (t=0) sind 34m³ Wasser im Tank. Bestimme die maximale und die minimale Wassermenge im Tank im abgebildeten Zeitraum zwischen t=0 und t=10 Minuten.

Lösung einblenden

Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Wasser im Wassertank) ausschließlich ab, und zwar um:

IAbnahme =

I1 (von 0 bis 2): Rechtecksfläche I1 = (2 - 0) ⋅ ( - 2 ) = 2 ⋅ ( - 2 ) = -4.

I2 (von 2 bis 5): Dreiecksfläche I2 = (5 - 2) ⋅ ( - 2 ) 2 = -6 2 = -3.

Somit nimmt der Bestand bis t=5 um -4 -3 = -7 ab.

Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=5 der minimale Bestand (Wasser im Wassertank) erreicht mit:
Bmin = 34 m³ -7 m³ = 27 m³.

Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:

I3 (von 5 bis 8): Dreiecksfläche I3 = (8 - 5) ⋅ 2 2 = 6 2 = 3.

I4 (von 8 bis 10): Rechtecksfläche I4 = (10 - 8) ⋅ 2 = 2 ⋅ 2 = 4.

Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 27 m³ +7 m³ = 34 m³.

Da dies nicht mehr ist als zu Beginn der Beobachtung (34 m³), ist der maximale Bestand (Wasser im Wassertank) der Startwert:
Bmax = 34 m³