Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 6.
I3 (von 6 bis 9): keine Fläche in diesem Abschnitt, also I = 0.
Für den Zuwachs des Bestands zwischen 0 und 9 gilt somit:
Iges = 12
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 5 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 6.
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -1.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 5 gilt somit:
Iges = 6
Da zu Begin ja bereits 60 m³ vorhanden waren, sind es nun nach 5 min
I5 = 60 m³
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = -4.5.
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 3.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 gilt somit:
Iges = -4.5
Da ja nach 6 s 92 cm vorhanden sind, und zwischen t=0 und t=6 insgesamt -1.5 cm dazu, also 1.5 cm weg kam,
müssen es zu Beginn
Istart =
92 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -4.
Somit nimmt der Bestand bis t=5 um -12
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=5 der minimale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmin = 61 cm
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 5 bis 8): Dreiecksfläche I3 = = = 3.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 45 cm
Da dies nicht mehr ist als zu Beginn der Beobachtung (61 cm), ist der maximale Bestand (Entfernung der Lok vom Bahnhof) der Startwert:
Bmax = 61 cm
