Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 3.
I3 (von 5 bis 8): keine Fläche in diesem Abschnitt, also I = 0.
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 gilt somit:
Iges = 3
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = 2.
I3 (von 5 bis 8): Dreiecksfläche I3 = = = -1.5.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 gilt somit:
Iges = 6
Da zu Begin ja bereits 55 m³ vorhanden waren, sind es nun nach 8 min
I8 = 55 m³
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = -4.5.
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 1.5.
I3 (von 6 bis 9):
Rechtecksfläche I3 = (9 - 6) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 gilt somit:
Iges = -4.5
Da ja nach 9 s 53 cm vorhanden sind, und zwischen t=0 und t=9 insgesamt 0 cm dazu kam,
müssen es zu Beginn
Istart =
53 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=2 nimmt der Bestand (Wasser im Wassertank) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 4.
Somit nimmt der Bestand bis t=2 um 4 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=2 der maximale Bestand (Wasser im Wassertank) erreicht mit:
Bmax = 55 m³
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -4.5.
I3 (von 5 bis 8):
Rechtecksfläche I3 = (8 - 5) ⋅
I4 (von 8 bis 10):
Trapezfläche I4 = (10 - 8) ⋅
= 2 ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 59 m³
Da dies weniger ist als zu Beginn der Beobachtung (55 m³), ist dies der minimale Bestand(Wasser im Wassertank):
Bmin = 41.5 m³
