Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I2 (von 2 bis 5):
Rechtecksfläche I2 = (5 - 2) ⋅
I3 (von 5 bis 8):
Trapezfläche I3 = (8 - 5) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6):
Trapezfläche I2 = (6 - 3) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 gilt somit:
Iges = 6
Da zu Begin ja bereits 26 Personen vorhanden waren, sind es nun nach 6 s
I6 = 26 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 3):
Trapezfläche I2 = (3 - 2) ⋅
= 1 ⋅
I3 (von 3 bis 5):
Rechtecksfläche I3 = (5 - 3) ⋅
I4 (von 5 bis 8):
Trapezfläche I4 = (8 - 5) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 8 gilt somit:
Iges = 8
Da ja nach 8 s 51 Personen vorhanden sind, und zwischen t=0 und t=8 insgesamt 40 Personen dazu kam,
müssen es zu Beginn
Istart =
51 Personen -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 6.
Somit nimmt der Bestand bis t=3 um 6 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=3 der maximale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmax = 39 cm
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -3.
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 45 cm
Da dies weniger ist als zu Beginn der Beobachtung (39 cm), ist dies der minimale Bestand(Entfernung der Lok vom Bahnhof):
Bmin = 36 cm
