Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6):
Trapezfläche I2 = (6 - 3) ⋅
= 3 ⋅
I3 (von 6 bis 9):
Rechtecksfläche I3 = (9 - 6) ⋅
Für den Zuwachs des Bestands zwischen 0 und 9 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 1):
Trapezfläche I1 = (1 - 0) ⋅
= 1 ⋅
I2 (von 1 bis 4):
Rechtecksfläche I2 = (4 - 1) ⋅
I3 (von 4 bis 7):
Trapezfläche I3 = (7 - 4) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 gilt somit:
Iges = 1.5
Da zu Begin ja bereits 56 Personen vorhanden waren, sind es nun nach 7 s
I7 = 56 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 1): Dreiecksfläche I1 = = = 0.5.
I2 (von 1 bis 4):
Rechtecksfläche I2 = (4 - 1) ⋅
I3 (von 4 bis 7):
Trapezfläche I3 = (7 - 4) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 gilt somit:
Iges = 0.5
Da ja nach 7 s 50 Personen vorhanden sind, und zwischen t=0 und t=7 insgesamt 11 Personen dazu kam,
müssen es zu Beginn
Istart =
50 Personen -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=6 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 6): Dreiecksfläche I2 = = = 3.
Somit nimmt der Bestand bis t=6 um 6
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=6 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 27 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 6 bis 8): Dreiecksfläche I3 = = = -2.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 36 Personen
Da dies nicht weniger ist als zu Beginn der Beobachtung (27 Personen), ist der minimale Bestand (Personen auf dem Festivalgelände) der Startwert:
Bmin = 27 Personen
