Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5):
Trapezfläche I2 = (5 - 3) ⋅
= 2 ⋅
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
I4 (von 7 bis 10):
Trapezfläche I4 = (10 - 7) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 10 gilt somit:
Iges = 6
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -2.
I3 (von 4 bis 7): Dreiecksfläche I3 = = = 3.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 gilt somit:
Iges = -4
Da zu Begin ja bereits 35 cm vorhanden waren, sind es nun nach 10 s
I10 = 35 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = 4.
I3 (von 4 bis 7): Dreiecksfläche I3 = = = -4.5.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 gilt somit:
Iges = 8
Da ja nach 7 Sekunden 76 Liter vorhanden sind, und zwischen t=0 und t=7 insgesamt 7.5 Liter dazu kam,
müssen es zu Beginn
Istart =
76 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=2 nimmt der Bestand (Wasser im Wassertank) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 3.
Somit nimmt der Bestand bis t=2 um 3 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=2 der maximale Bestand (Wasser im Wassertank) erreicht mit:
Bmax = 30 m³
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 2 bis 4): Dreiecksfläche I2 = = = -4.
I3 (von 4 bis 6):
Rechtecksfläche I3 = (6 - 4) ⋅
I4 (von 6 bis 8):
Trapezfläche I4 = (8 - 6) ⋅
= 2 ⋅
I5 (von 8 bis 10):
Rechtecksfläche I5 = (10 - 8) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 33 m³
Da dies weniger ist als zu Beginn der Beobachtung (30 m³), ist dies der minimale Bestand(Wasser im Wassertank):
Bmin = 8 m³