Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 4):
Trapezfläche I2 = (4 - 3) ⋅
= 1 ⋅
I3 (von 4 bis 6):
Rechtecksfläche I3 = (6 - 4) ⋅
I4 (von 6 bis 9):
Trapezfläche I4 = (9 - 6) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 gilt somit:
Iges = 6
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5):
Trapezfläche I2 = (5 - 3) ⋅
= 2 ⋅
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 gilt somit:
Iges = 12
Da zu Begin ja bereits 56 Personen vorhanden waren, sind es nun nach 7 s
I7 = 56 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 3.
I2 (von 3 bis 6): Dreiecksfläche I2 = = = -1.5.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 6 gilt somit:
Iges = 3
Da ja nach 6 s 65 cm vorhanden sind, und zwischen t=0 und t=6 insgesamt 1.5 cm dazu kam,
müssen es zu Beginn
Istart =
65 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Entfernung der Lok vom Bahnhof) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -4.5.
Somit nimmt der Bestand bis t=5 um -6
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=5 der minimale Bestand (Entfernung der Lok vom Bahnhof) erreicht mit:
Bmin = 52 cm
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Entfernung der Lok vom Bahnhof) von Bend = 41.5 cm
Da dies nicht mehr ist als zu Beginn der Beobachtung (52 cm), ist der maximale Bestand (Entfernung der Lok vom Bahnhof) der Startwert:
Bmax = 52 cm