Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 4): Dreiecksfläche I2 = = = 1.5.
I3 (von 4 bis 6): keine Fläche in diesem Abschnitt, also I = 0.
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 6 gilt somit:
Iges = 9
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = 2.
I3 (von 4 bis 7): Dreiecksfläche I3 = = = -1.5.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 10 gilt somit:
Iges = 4
Da zu Begin ja bereits 44 cm vorhanden waren, sind es nun nach 10 s
I10 = 44 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 10 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 1.
I2 (von 2 bis 4):
Rechtecksfläche I2 = (4 - 2) ⋅
I3 (von 4 bis 5):
Trapezfläche I3 = (5 - 4) ⋅
= 1 ⋅
I4 (von 5 bis 7):
Rechtecksfläche I4 = (7 - 5) ⋅
I5 (von 7 bis 10):
Trapezfläche I5 = (10 - 7) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 10 gilt somit:
Iges = 1
Da ja nach 10 s 59 Personen vorhanden sind, und zwischen t=0 und t=10 insgesamt 18.5 Personen dazu kam,
müssen es zu Beginn
Istart =
59 Personen -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=3 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 4.5.
Somit nimmt der Bestand bis t=3 um 4.5 zu.
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=3 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 27 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I2 (von 3 bis 5): Dreiecksfläche I2 = = = -2.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 31.5 Personen
Da dies nicht weniger ist als zu Beginn der Beobachtung (27 Personen), ist der minimale Bestand (Personen auf dem Festivalgelände) der Startwert:
Bmin = 27 Personen
