Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Wasser in einen Wassertank) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4):
Trapezfläche I2 = (4 - 2) ⋅
= 2 ⋅
I3 (von 4 bis 5):
Rechtecksfläche I3 = (5 - 4) ⋅
I4 (von 5 bis 7):
Trapezfläche I4 = (7 - 5) ⋅
= 2 ⋅
Für den Zuwachs des Bestands (Wasser in einen Wassertank) zwischen 0 und 7 gilt somit:
Iges = 8
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 4.
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -6.
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
I4 (von 7 bis 9):
Trapezfläche I4 = (9 - 7) ⋅
= 2 ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 gilt somit:
Iges = 4
Da zu Begin ja bereits 60 cm vorhanden waren, sind es nun nach 9 s
I9 = 60 cm
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 2.
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -6.
I3 (von 5 bis 7):
Rechtecksfläche I3 = (7 - 5) ⋅
I4 (von 7 bis 9):
Trapezfläche I4 = (9 - 7) ⋅
= 2 ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 9 gilt somit:
Iges = 2
Da ja nach 9 Sekunden 84 Liter vorhanden sind, und zwischen t=0 und t=9 insgesamt -21 Liter dazu, also 21 Liter weg kam,
müssen es zu Beginn
Istart =
84 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=4 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 4): Dreiecksfläche I2 = = = 3.
Somit nimmt der Bestand bis t=4 um 6
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=4 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 48 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 4 bis 7): Dreiecksfläche I3 = = = -1.5.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 57 Personen
Da dies nicht weniger ist als zu Beginn der Beobachtung (48 Personen), ist der minimale Bestand (Personen auf dem Festivalgelände) der Startwert:
Bmin = 48 Personen