nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Integrale graphisch BF

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Geschwindigkeit einer Modelleisenbahn (f(t) in cm/s, t in Sekunden nach Beobachtungsbeginn). Wie weit (in cm) ist die Modelleisenbahn zwischen t=2 Sekunden und t=8 Sekunden gefahren?

Lösung einblenden

Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I2 (von 2 bis 5): Dreiecksfläche I2 = (5 - 2) ⋅ 2 2 = 6 2 = 3.

I3 (von 5 bis 8): keine Fläche in diesem Abschnitt, also I = 0.

Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 8 gilt somit:

Iges = 3 +0 = 3

Integrale graphisch BF (mit Startwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Zu Beginn der Beobachtung (t=0) sind 55m³ Wasser im Tank. Wie viel Wasser ist nach 8 Minuten im Tank?

Lösung einblenden

Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 3): Rechtecksfläche I1 = (3 - 0) ⋅ 2 = 3 ⋅ 2 = 6.

I2 (von 3 bis 5): Dreiecksfläche I2 = (5 - 3) ⋅ 2 2 = 4 2 = 2.

I3 (von 5 bis 8): Dreiecksfläche I3 = (8 - 5) ⋅ ( - 1 ) 2 = -3 2 = -1.5.

Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 8 gilt somit:

Iges = 6 +2 -1.5 = 6.5

Da zu Begin ja bereits 55 m³ vorhanden waren, sind es nun nach 8 min
I8 = 55 m³ +6.5 m³ = 61.5 m³ .

Integrale graphisch BF (mit Endwert)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Geschwindigkeit einer Modelleisenbahn, die aus dem Bahnhof ausfährt (f(t) in cm/s, t in Sekunden nach Beobachtungsbeginn). Negative Geschwindigkeiten bedeuten, dass die Lok rückwärts fährt, also wieder Richtung Bahnhof. Wie weit (in cm) war die Modelleisenbahn bei Beobachtungsbeginn vom Bahnhof entfernt, wenn sie nach t=9 Sekunden bereits 53 cm vom Bahnhof entfernt war ?

Lösung einblenden

Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).

Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:

I1 (von 0 bis 3): Dreiecksfläche I1 = (3 - 0) ⋅ ( - 3 ) 2 = -9 2 = -4.5.

I2 (von 3 bis 6): Dreiecksfläche I2 = (6 - 3) ⋅ 1 2 = 3 2 = 1.5.

I3 (von 6 bis 9): Rechtecksfläche I3 = (9 - 6) ⋅ 1 = 3 ⋅ 1 = 3.

Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 9 gilt somit:

Iges = -4.5 +1.5 +3 = 0

Da ja nach 9 s 53 cm vorhanden sind, und zwischen t=0 und t=9 insgesamt 0 cm dazu kam, müssen es zu Beginn
Istart = 53 cm - 0 cm = 53 cm gewesen sein.

Min. und Maximum bei graph. Integral

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man den Graph der Zu- bzw. Abflussrate von Wasser in einen Wassertank (f(t) in m³/min, t in Minuten nach Beobachtungsbeginn). Zu Beginn der Beobachtung (t=0) sind 55m³ Wasser im Tank. Bestimme die maximale und die minimale Wassermenge im Tank im abgebildeten Zeitraum zwischen t=0 und t=10 Minuten.

Lösung einblenden

Im ersten Teil zwischen t=0 und t=2 nimmt der Bestand (Wasser im Wassertank) ausschließlich zu, und zwar um:

IZunahme =

I1 (von 0 bis 2): Dreiecksfläche I1 = (2 - 0) ⋅ 4 2 = 8 2 = 4.

Somit nimmt der Bestand bis t=2 um 4 zu.

Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=2 der maximale Bestand (Wasser im Wassertank) erreicht mit:
Bmax = 55 m³ +4 m³ = 59 m³.

Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:

I2 (von 2 bis 5): Dreiecksfläche I2 = (5 - 2) ⋅ ( - 3 ) 2 = -9 2 = -4.5.

I3 (von 5 bis 8): Rechtecksfläche I3 = (8 - 5) ⋅ ( - 3 ) = 3 ⋅ ( - 3 ) = -9.

I4 (von 8 bis 10): Trapezfläche I4 = (10 - 8) ⋅ -3 + ( - 1 ) 2 = 2 ⋅ ( - 2 ) = -4.

Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 59 m³ -17.5 m³ = 41.5 m³.

Da dies weniger ist als zu Beginn der Beobachtung (55 m³), ist dies der minimale Bestand(Wasser im Wassertank):
Bmin = 41.5 m³