Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 1.
I2 (von 2 bis 5):
Rechtecksfläche I2 = (5 - 2) ⋅
I3 (von 5 bis 7):
Trapezfläche I3 = (7 - 5) ⋅
= 2 ⋅
I4 (von 7 bis 9):
Rechtecksfläche I4 = (9 - 7) ⋅
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 0 und 9 gilt somit:
Iges = 1
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = 4.
I2 (von 2 bis 5):
Rechtecksfläche I2 = (5 - 2) ⋅
I3 (von 5 bis 7):
Trapezfläche I3 = (7 - 5) ⋅
= 2 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 7 gilt somit:
Iges = 4
Da zu Begin ja bereits 38 Personen vorhanden waren, sind es nun nach 7 s
I7 = 38 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2): Dreiecksfläche I1 = = = -2.
I2 (von 2 bis 4): Dreiecksfläche I2 = = = 1.
I3 (von 4 bis 7):
Rechtecksfläche I3 = (7 - 4) ⋅
Für den Zuwachs (bzw. die Abnahme) des Bestands (Wasser im Wassertank) zwischen 0 und 7 gilt somit:
Iges = -2
Da ja nach 7 Sekunden 90 Liter vorhanden sind, und zwischen t=0 und t=7 insgesamt 2 Liter dazu kam,
müssen es zu Beginn
Istart =
90 Liter -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Wasser im Wassertank) ausschließlich ab, und zwar um:
IAbnahme =
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -3.
Somit nimmt der Bestand bis t=5 um -4
Weil danach der Bestand wieder ständig zunimmt, ist zum Zeitpunkt t=5 der minimale Bestand (Wasser im Wassertank) erreicht mit:
Bmin = 45 m³
Die anschließende Zunahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 5 bis 7): Dreiecksfläche I3 = = = 2.
I4 (von 7 bis 10):
Rechtecksfläche I4 = (10 - 7) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 38 m³
Da dies mehr ist als zu Beginn der Beobachtung (45 m³), ist dies der maximale Bestand(Wasser im Wassertank):
Bmax = 46 m³