Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 7 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I2 (von 2 bis 4):
Trapezfläche I2 = (4 - 2) ⋅
= 2 ⋅
I3 (von 4 bis 7):
Rechtecksfläche I3 = (7 - 4) ⋅
Für den Zuwachs des Bestands (zurückgelegte Strecke der Modelleisenbahn) zwischen 2 und 7 gilt somit:
Iges = 6
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3):
Trapezfläche I1 = (3 - 0) ⋅
= 3 ⋅
I2 (von 3 bis 6):
Rechtecksfläche I2 = (6 - 3) ⋅
I3 (von 6 bis 9): Dreiecksfläche I3 = = = 6.
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 gilt somit:
Iges = 10.5
Da zu Begin ja bereits 47 Personen vorhanden waren, sind es nun nach 9 s
I9 = 47 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = -6.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 5 gilt somit:
Iges = -8
Da ja nach 5 s 79 cm vorhanden sind, und zwischen t=0 und t=5 insgesamt -14 cm dazu, also 14 cm weg kam,
müssen es zu Beginn
Istart =
79 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Personen auf dem Festivalgelände) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 3):
Rechtecksfläche I1 = (3 - 0) ⋅
I2 (von 3 bis 5): Dreiecksfläche I2 = = = 3.
Somit nimmt der Bestand bis t=5 um 9
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=5 der maximale Bestand (Personen auf dem Festivalgelände) erreicht mit:
Bmax = 41 Personen
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 5 bis 8): Dreiecksfläche I3 = = = -6.
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Personen auf dem Festivalgelände) von Bend = 53 Personen
Da dies nicht weniger ist als zu Beginn der Beobachtung (41 Personen), ist der minimale Bestand (Personen auf dem Festivalgelände) der Startwert:
Bmin = 41 Personen
