Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Von einem radioaktiven Element sind zu Beginn der Beobachtung 6g vorhanden. Nach 10 Tagen sind nur noch 2,207g übrig. a) Wie viel g sind noch nach 11 Tagen da? b) Wann sind nur noch 2g davon übrig?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 6 ist, gilt: f(0)= 6, also 6 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(10)= = 2,2073.
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ -0.1 |
also k ≈ -0.099994411687141, => f(t)=
Wert zur Zeit 11: f(11)= ≈ 2
Wann wird der Wert 2?: f(t)=2
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 10.9861 |
also t=11
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Wissenschaftler glauben herausgefunden zu haben, dass blonde Haare wegen rezessiver Vererbung aussterben. Demnach würde sich alle 1396 Jahre die Zahl der Blonden halbieren. a) Wenn man davon ausgeht, dass im Jahr 2000 eine Milliarde blonde Menschen auf der Welt waren, wie viele (in Milliarden) wären es dann im Jahr 2218? b) Wie viel Jahre später (als 2000) gäbe es nur noch 0,5 Milliarden Blondies?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 1 ist, gilt: f(0)= 1, also 1 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Halbwertszeit.
Dazu stellen wir die Formel TH= um zu
k==
≈ -0.00049652376830942
=> f(t)=
Wert zur Zeit 218: f(218)= ≈ 0.9
Wann wird der Wert 0.5?: f(t)=0.5
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 1394.6623 |
also t=1394.7
Exponentielles Wachstum mit Prozent
Beispiel:
Ein radioaktives Element verliert jeden Tag 10% seiner Masse. a) Wie viel Prozent seiner Masse sind nach 3 Tagen noch vorhanden. b) Wann sind noch 50% der Masse da?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 100 ist, gilt: f(0)= 100, also 100 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1-p/100) = ln(0.9) ≈ -0.10536051565783
=> f(t)=
Wert zur Zeit 3: f(3)= ≈ 72.9
Wann wird der Wert 50?: f(t)=50
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 6.5763 |
also t=6.6
beschränktes Wachstum mit 2. Wert
Beispiel:
Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 28 Grad an. a) Welche Temperatur zeigt das Thermometer nach 2,5 Minuten an? b) Wann zeigt es 36,9° an?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.
Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = = =
= | |||
= | | | ||
= |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(0.5)= = 28.
= | | | ||
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 1.597 |
also k ≈ 1.5970153924355, => f(t)=
Wert zur Zeit 2.5: f(2.5)= ≈ 36.6
Wann wird der Wert 36.9?: f(t)=36.9
= | | | ||
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 3.3177 |
also t=3.3
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Ein Patient bekommt über eine Infusion jede Minute 8ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 5% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 14 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 152ml davon in seinem Blut?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 8 - 0.05⋅f(t)
wenn man 0.05 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.05( - f(t))
also f'(t) = 0.05(160 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=160 und der Wachstumsfaktor k=0.05 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).
= | |||
= | |||
= | | |
||
= |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 14: f(14)= ≈ 80.5
Wann wird der Wert 152?: f(t)=152
= | | | ||
= | |: | ||
= | |ln(⋅) | ||
= | |: | ||
= | ≈ 59.9146 |
also t=59.9
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.
Dazu setzen wir k = einfach in die Formel TH = - ein:
TH = - ≈ 69.315 min