nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentielles Wachstum mit 2. Wert

Beispiel:

Der Schalldruckpegel gibt an wie laut etwas ist. Die zugehörige Maßeinheit ist dB (Dezibel). Der leiseste für den Menschen noch wahrnehmbare Schall ist 0 Dezibel. Dabei ist der Schalldruck 0,00002 Pa (Pascal). Mit steigendem Schalldruckpegel (in dB) wächst der Schalldruck (in Pa) exponentiell. Ein Fernseher auf Zimmerlautstärke erzeugt einen Schalldruckpegel von 60 dB, was einem Schalldruck von 0,02 Pa entspricht. a) Wie hoch ist der Schalldruck bei 99 dB? b) Wie viel dB misst man bei einem Schalldruck von 5 Pa?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = a · e k · 0 = a = a

somit gilt: f(t)= 0,00002 e k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(60)= 0,00002 e k · 60 = 0,02.

0,00002 e 60k = 0,02 |:0,00002
e 60k = 1000 |ln(⋅)
60k = ln( 1000 ) |:60
k = 1 60 ln( 1000 ) ≈ 0.1151

also k ≈ 0.1151292546497, => f(t)= 0,00002 e 0,1151t


Wert zur Zeit 99: f(99)= 0,00002 e 0,115199 ≈ 1.8


Wann wird der Wert 5?: f(t)=5

0,00002 e 0,1151t = 5 |:0,00002
e 0,1151t = 250000 |ln(⋅)
0,1151t = ln( 250000 ) |:0,1151
t = 1 0,1151 ln( 250000 ) ≈ 107.9862
t = 2 0,1151 ln( 500 )

also t=108

Exponentielles Wachstum mit Halbwertszeit

Beispiel:

Wissenschaftler glauben herausgefunden zu haben, dass blonde Haare wegen rezessiver Vererbung aussterben. Demnach würde sich alle 1538 Jahre die Zahl der Blonden halbieren. a) Wenn man davon ausgeht, dass im Jahr 2000 eine Milliarde blonde Menschen auf der Welt waren, wie viele (in Milliarden) wären es dann im Jahr 2154? b) Wie viel Jahre später (als 2000) gäbe es nur noch 0,3 Milliarden Blondies?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 1 ist, gilt: f(0)= 1, also 1 = a · e k · 0 = a = a

somit gilt: f(t)= e k · t , wir müssen also nur noch k bestimmen.

Wir berechnen k über die Halbwertszeit. Dazu stellen wir die Formel TH= -ln(2) k um zu
k= -ln(2) T = -ln(2) 1538 ≈ -0.00045068087162545


=> f(t)= e -0,0005t


Wert zur Zeit 154: f(154)= e -0,0005154 ≈ 0.9


Wann wird der Wert 0.3?: f(t)=0.3

e -0,0005t = 0,3 |ln(⋅)
-0,0005t = ln( 0,3 ) |:-0,0005
t = - 1 0,0005 ln( 0,3 ) ≈ 2669.5628

also t=2669.6

Exponentielles Wachstum mit Prozent

Beispiel:

Im Pythagoras-See nimmt die Lichtstärke mit jedem Meter unter Wasser um 18% ab. An der Oberfläche leuchtet eine Lichtquelle mit 13 Lux. a) Wie hoch ist die Lichtstärke noch nach 3 Metern? b) Nach wieviel Metern ist die Lichtstärke noch 6 Lux?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 13 ist, gilt: f(0)= 13, also 13 = a · e k · 0 = a = a

somit gilt: f(t)= 13 e k · t , wir müssen also nur noch k bestimmen.

Dazu nutzen wir die Formel k= ln(1-p/100) = ln(0.82) ≈ -0.19845093872384


=> f(t)= 13 e -0,1985t


Wert zur Zeit 3: f(3)= 13 e -0,19853 ≈ 7.2


Wann wird der Wert 6?: f(t)=6

13 e -0,1985t = 6 |:13
e -0,1985t = 6 13 |ln(⋅)
-0,1985t = ln( 6 13 ) |:-0,1985
t = - 1 0,1985 ln( 6 13 ) ≈ 3.8952

also t=3.9

beschränktes Wachstum mit 2. Wert

Beispiel:

Ein Wasserboiler schaltet ab wenn er das Wasser auf 57° erhitzt hat. Nach 5 min ist das Wasser auf 53° abgekühlt. Die Temperatur des Raumes, in dem sich der Boiler befindet ist 20°. a) Wie warm war das Wasser nach 1 Minuten?b) Wie lange ist der Boiler ausgeschaltet, wenn er bei einer Wassertemperatur von 50° wieder automatisch einschaltet?

Lösung einblenden

Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= S - c · e -k · t .

Aus dem Text entnehmen wir, dass die Schranke S=20 sein muss.

Da der Anfangsbestand 57 ist, gilt: f(0)= 57, also 57 = 20 - c · e -k · 0 = 20 - c = 20 - c

57 = 20 - c
57 = -c +20 | -57 + c
c = -37

somit gilt: f(t)= 20 +37 e -k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(5)= 20 +37 e -k · 5 = 53.

20 +37 e -5k = 52,997
37 e -5k +20 = 52,997 | -20
37 e -5k = 32,997 |:37
e -5k = 0,8918 |ln(⋅)
-5k = ln( 0,8918 ) |:-5
k = - 1 5 ln( 0,8918 ) ≈ 0.0229

also k ≈ 0.022902677357752, => f(t)= 20 +37 e -0,0229t


Wert zur Zeit 1: f(1)= 20 +37 e -0,02291 ≈ 56.2


Wann wird der Wert 50?: f(t)=50

20 +37 e -0,0229t = 50
37 e -0,0229t +20 = 50 | -20
37 e -0,0229t = 30 |:37
e -0,0229t = 30 37 |ln(⋅)
-0,0229t = ln( 30 37 ) |:-0,0229
t = - 1 0,0229 ln( 30 37 ) ≈ 9.1581

also t=9.2

beschränktes Wachstum mit Differentialgleichung

Beispiel:

Ein Patient bekommt über eine Infusion jede Minute 4ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 10% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 7 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 39ml davon in seinem Blut?

Lösung einblenden

Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:

f'(t) = 4 - 0.1⋅f(t)

wenn man 0.1 ausklammert ergibt sich folgende Gleichung

f'(t) = 0.1( 4 0.1 - f(t))

also f'(t) = 0.1(40 - f(t))

das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))

Wir wissen nun also, dass die Schranke S=40 und der Wachstumsfaktor k=0.1 sein müssen.

Der Funktionsterm muss also die Form f(t)= 40 - c · e -0,1t haben.

Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).

0 = 40 - c · e -0,10
0 = 40 - c
0 = -c +40 |0 + c
c = 40

somit haben wir nun unseren Funktionsterm: f(t)= 40 -40 e -0,1x


Wert zur Zeit 7: f(7)= 40 -40 e -0,17 ≈ 20.1


Wann wird der Wert 39?: f(t)=39

40 -40 e -0,1t = 39
-40 e -0,1t +40 = 39 | -40
-40 e -0,1t = -1 |:-40
e -0,1t = 1 40 |ln(⋅)
-0,1t = ln( 1 40 ) |:-0,1
t = - 1 0,1 ln( 1 40 ) ≈ 36.8888

also t=36.9

Halbwerts- + Verdopplungszeit best.

Beispiel:

Gegeben ist die Bestandsfunktion f mit f(t)= 17 e -0,06t (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.

Lösung einblenden

Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent (-0,06 ) erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.

Dazu setzen wir k = -0,06 einfach in die Formel TH = - ln(2) k ein:

TH = - ln(2) -0,06 11.552 min