Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Der Schalldruckpegel gibt an wie laut etwas ist. Die zugehörige Maßeinheit ist dB (Dezibel). Der leiseste für den Menschen noch wahrnehmbare Schall ist 0 Dezibel. Dabei ist der Schalldruck 0,00002 Pa (Pascal). Mit steigendem Schalldruckpegel (in dB) wächst der Schalldruck (in Pa) exponentiell. Ein Fernseher auf Zimmerlautstärke erzeugt einen Schalldruckpegel von 60 dB, was einem Schalldruck von 0,02 Pa entspricht. a) Wie hoch ist der Schalldruck bei 97 dB? b) Wie viel dB misst man bei einem Schalldruck von 47 Pa?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(60)= = 0,02.
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.1151 |
also k ≈ 0.1151292546497, => f(t)=
Wert zur Zeit 97: f(97)= ≈ 1.4
Wann wird der Wert 47?: f(t)=47
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 127.4537 |
also t=127.5
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Ein Finanzberater bewirbt eine Geldanlage, bei der sich das Geld immer alle 12 Jahre verdoppelt. Herr Q. legt 3-Tausend € an. a) Wie hoch ist das Vermögen nach 29 Jahren (in Tausend Euro)? b) Wann ist das Vermögen auf 10-Tausend Euro gestiegen?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 3 ist, gilt: f(0)= 3, also 3 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Verdopplungszeit.
Dazu stellen wir die Formel TV= um zu
k==
≈ 0.057762265046662
=> f(t)=
Wert zur Zeit 29: f(29)= ≈ 16
Wann wird der Wert 10?: f(t)=10
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 20.8437 |
also t=20.8
Exponentielles Wachstum mit Prozent
Beispiel:
Bei einer Bakterienkultur geht man davon aus, dass sie jede Stunde um 5% wächst. Zu Beginn der Beobachtung werden 9 Milliarden geschätzt. a) Aus wie vielen Milliarden besteht die Bakterienkultur nach 5 Stunden? b) Wann sind es 11 Millarden?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 9 ist, gilt: f(0)= 9, also 9 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1+p/100) = ln(1.05) ≈ 0.048790164169432
=> f(t)=
Wert zur Zeit 5: f(5)= ≈ 11.5
Wann wird der Wert 11?: f(t)=11
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 4.1121 |
also t=4.1
beschränktes Wachstum mit 2. Wert
Beispiel:
Ein Wasserboiler schaltet ab wenn er das Wasser auf 61° erhitzt hat. Nach 2 min ist das Wasser auf 54° abgekühlt. Die Temperatur des Raumes, in dem sich der Boiler befindet ist 20°. a) Wie warm war das Wasser nach 5 Minuten?b) Wie lange ist der Boiler ausgeschaltet, wenn er bei einer Wassertemperatur von 50° wieder automatisch einschaltet?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=20 sein muss.
Da der Anfangsbestand 61 ist, gilt: f(0)= 61, also 61 = = =
| = | |||
| = | | | ||
| = |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(2)= = 54.
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.0936 |
also k ≈ 0.093586653762489, => f(t)=
Wert zur Zeit 5: f(5)= ≈ 45.7
Wann wird der Wert 50?: f(t)=50
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.3373 |
also t=3.3
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Deutschland hat derzeit ca. 80 Millionen Einwohner. Aufgrund der niedrigen Geburtenrate deutscher Frauen verliert das Land jedes Jahr 1,1% seiner Bevölkerung. Durch Zuwanderung könnte dieser Bevölkerungsrückgang abgemildert werden. a) Wie viel Millionen Menschen gäbe es in 9 Jahren, wenn jedes Jahr 0,5 Millionen nach Deutschland einwandern würden. b) In wie vielen Jahren hätte Deutschland dann 71 Millionen Einwohner?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 0.5 - 0.011⋅f(t)
wenn man 0.011 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.011( - f(t))
also f'(t) = 0.011(45.45 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=45.45 und der Wachstumsfaktor k=0.011 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=80 ein (Punktprobe).
| = | |||
| = | |||
| = | | | ||
| = |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 9: f(9)= ≈ 76.7
Wann wird der Wert 71?: f(t)=71
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 27.4346 |
also t=27.4
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am postiven Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentielles Wachstum handeln muss. Somit suchen wir die Verdopplungszeit.
Dazu setzen wir k = einfach in die Formel TV = ein:
TV = ≈ 8.664 min
