nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentielles Wachstum mit 2. Wert

Beispiel:

Der Schalldruckpegel gibt an wie laut etwas ist. Die zugehörige Maßeinheit ist dB (Dezibel). Der leiseste für den Menschen noch wahrnehmbare Schall ist 0 Dezibel. Dabei ist der Schalldruck 0,00002 Pa (Pascal). Mit steigendem Schalldruckpegel (in dB) wächst der Schalldruck (in Pa) exponentiell. Ein Fernseher auf Zimmerlautstärke erzeugt einen Schalldruckpegel von 60 dB, was einem Schalldruck von 0,02 Pa entspricht. a) Wie hoch ist der Schalldruck bei 87 dB? b) Wie viel dB misst man bei einem Schalldruck von 74 Pa?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = a · e k · 0 = a = a

somit gilt: f(t)= 0,00002 e k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(60)= 0,00002 e k · 60 = 0,02.

0,00002 e 60k = 0,02 |:0,00002
e 60k = 1000 |ln(⋅)
60k = ln( 1000 ) |:60
k = 1 60 ln( 1000 ) ≈ 0.1151

also k ≈ 0.1151292546497, => f(t)= 0,00002 e 0,1151t


Wert zur Zeit 87: f(87)= 0,00002 e 0,115187 ≈ 0.4


Wann wird der Wert 74?: f(t)=74

0,00002 e 0,1151t = 74 |:0,00002
e 0,1151t = 3700000 |ln(⋅)
0,1151t = ln( 3700000 ) |:0,1151
t = 1 0,1151 ln( 3700000 ) ≈ 131.3974

also t=131.4

Exponentielles Wachstum mit Halbwertszeit

Beispiel:

Ein Finanzberater bewirbt eine Geldanlage, bei der sich das Geld immer alle 12 Jahre verdoppelt. Herr Q. legt 18-Tausend € an. a) Wie hoch ist das Vermögen nach 13 Jahren (in Tausend Euro)? b) Wann ist das Vermögen auf 30-Tausend Euro gestiegen?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 18 ist, gilt: f(0)= 18, also 18 = a · e k · 0 = a = a

somit gilt: f(t)= 18 e k · t , wir müssen also nur noch k bestimmen.

Wir berechnen k über die Verdopplungszeit. Dazu stellen wir die Formel TV= ln(2) k um zu
k= ln(2) T = ln(2) 12 ≈ 0.057762265046662


=> f(t)= 18 e 0,0578t


Wert zur Zeit 13: f(13)= 18 e 0,057813 ≈ 38.1


Wann wird der Wert 30?: f(t)=30

18 e 0,0578t = 30 |:18
e 0,0578t = 5 3 |ln(⋅)
0,0578t = ln( 5 3 ) |:0,0578
t = 1 0,0578 ln( 5 3 ) ≈ 8.8436

also t=8.8

Exponentielles Wachstum mit Prozent

Beispiel:

Bei einer Bakterienkultur geht man davon aus, dass sie jede Stunde um 2% wächst. Zu Beginn der Beobachtung werden 5 Milliarden geschätzt. a) Aus wie vielen Milliarden besteht die Bakterienkultur nach 2 Stunden? b) Wann sind es 6 Millarden?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 5 ist, gilt: f(0)= 5, also 5 = a · e k · 0 = a = a

somit gilt: f(t)= 5 e k · t , wir müssen also nur noch k bestimmen.

Dazu nutzen wir die Formel k= ln(1+p/100) = ln(1.02) ≈ 0.01980262729618


=> f(t)= 5 e 0,0198t


Wert zur Zeit 2: f(2)= 5 e 0,01982 ≈ 5.2


Wann wird der Wert 6?: f(t)=6

5 e 0,0198t = 6 |:5
e 0,0198t = 6 5 |ln(⋅)
0,0198t = ln( 6 5 ) |:0,0198
t = 1 0,0198 ln( 6 5 ) ≈ 9.2082

also t=9.2

beschränktes Wachstum mit 2. Wert

Beispiel:

Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 29 Grad an. a) Welche Temperatur zeigt das Thermometer nach 1,5 Minuten an? b) Wann zeigt es 36,9° an?

Lösung einblenden

Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= S - c · e -k · t .

Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.

Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = 37 - c · e -k · 0 = 37 - c = 37 - c

17 = 37 - c
17 = -c +37 | -17 + c
c = 20

somit gilt: f(t)= 37 -20 e -k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(0.5)= 37 -20 e -k · 0,5 = 29.

37 -20 e -0,5k = 29,0001
-20 e -0,5k +37 = 29,0001 | -37
-20 e -0,5k = -7,9999 |:-20
e -0,5k = 0,4 |ln(⋅)
-0,5k = ln( 0,4 ) |:-0,5
k = - 1 0,5 ln( 0,4 ) ≈ 1.8326

also k ≈ 1.8325814637483, => f(t)= 37 -20 e -1,8326t


Wert zur Zeit 1.5: f(1.5)= 37 -20 e -1,83261,5 ≈ 35.7


Wann wird der Wert 36.9?: f(t)=36.9

37 -20 e -1,8326t = 36,9
-20 e -1,8326t +37 = 36,9 | -37
-20 e -1,8326t = -0,1 |:-20
e -1,8326t = 0,005 |ln(⋅)
-1,8326t = ln( 0,005 ) |:-1,8326
t = - 1 1,8326 ln( 0,005 ) ≈ 2.8911

also t=2.9

beschränktes Wachstum mit Differentialgleichung

Beispiel:

Ein Patient bekommt über eine Infusion jede Minute 9ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 1% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 12 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 567ml davon in seinem Blut?

Lösung einblenden

Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:

f'(t) = 9 - 0.01⋅f(t)

wenn man 0.01 ausklammert ergibt sich folgende Gleichung

f'(t) = 0.01( 9 0.01 - f(t))

also f'(t) = 0.01(900 - f(t))

das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))

Wir wissen nun also, dass die Schranke S=900 und der Wachstumsfaktor k=0.01 sein müssen.

Der Funktionsterm muss also die Form f(t)= 900 - c · e -0,01t haben.

Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).

0 = 900 - c · e -0,010
0 = 900 - c
0 = -c +900 |0 + c
c = 900

somit haben wir nun unseren Funktionsterm: f(t)= 900 -900 e -0,01x


Wert zur Zeit 12: f(12)= 900 -900 e -0,0112 ≈ 101.8


Wann wird der Wert 567?: f(t)=567

900 -900 e -0,01t = 567
-900 e -0,01t +900 = 567 | -900
-900 e -0,01t = -333 |:-900
e -0,01t = 37 100 |ln(⋅)
-0,01t = ln( 37 100 ) |:-0,01
t = - 1 0,01 ln( 37 100 ) ≈ 99.4252

also t=99.4

Halbwerts- + Verdopplungszeit best.

Beispiel:

Gegeben ist die Bestandsfunktion f mit f(t)= 17 e -0,02t (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.

Lösung einblenden

Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent (-0,02 ) erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.

Dazu setzen wir k = -0,02 einfach in die Formel TH = - ln(2) k ein:

TH = - ln(2) -0,02 34.657 min