Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Der Schalldruckpegel gibt an wie laut etwas ist. Die zugehörige Maßeinheit ist dB (Dezibel). Der leiseste für den Menschen noch wahrnehmbare Schall ist 0 Dezibel. Dabei ist der Schalldruck 0,00002 Pa (Pascal). Mit steigendem Schalldruckpegel (in dB) wächst der Schalldruck (in Pa) exponentiell. Ein Fernseher auf Zimmerlautstärke erzeugt einen Schalldruckpegel von 60 dB, was einem Schalldruck von 0,02 Pa entspricht. a) Wie hoch ist der Schalldruck bei 70 dB? b) Wie viel dB misst man bei einem Schalldruck von 34 Pa?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(60)= = 0,02.
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.1151 |
also k ≈ 0.1151292546497, => f(t)=
Wert zur Zeit 70: f(70)= ≈ 0.1
Wann wird der Wert 34?: f(t)=34
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 124.6406 |
also t=124.6
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Ein Finanzberater bewirbt eine Geldanlage, bei der sich das Geld immer alle 20 Jahre verdoppelt. Herr Q. legt 6-Tausend € an. a) Wie hoch ist das Vermögen nach 38 Jahren (in Tausend Euro)? b) Wann ist das Vermögen auf 30-Tausend Euro gestiegen?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 6 ist, gilt: f(0)= 6, also 6 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Verdopplungszeit.
Dazu stellen wir die Formel TV= um zu
k==
≈ 0.034657359027997
=> f(t)=
Wert zur Zeit 38: f(38)= ≈ 22.4
Wann wird der Wert 30?: f(t)=30
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 46.439 |
also t=46.4
Exponentielles Wachstum mit Prozent
Beispiel:
Bei einer Bakterienkultur geht man davon aus, dass sie jede Stunde um 15% wächst. Zu Beginn der Beobachtung werden 19 Milliarden geschätzt. a) Aus wie vielen Milliarden besteht die Bakterienkultur nach 4 Stunden? b) Wann sind es 33 Millarden?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 19 ist, gilt: f(0)= 19, also 19 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1+p/100) = ln(1.15) ≈ 0.13976194237516
=> f(t)=
Wert zur Zeit 4: f(4)= ≈ 33.2
Wann wird der Wert 33?: f(t)=33
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.949 |
also t=3.9
beschränktes Wachstum mit 2. Wert
Beispiel:
Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 29 Grad an. a) Welche Temperatur zeigt das Thermometer nach 1,5 Minuten an? b) Wann zeigt es 36,9° an?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.
Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = = =
| = | |||
| = | | | ||
| = |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(0.5)= = 29.
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 1.8326 |
also k ≈ 1.8325814637483, => f(t)=
Wert zur Zeit 1.5: f(1.5)= ≈ 35.7
Wann wird der Wert 36.9?: f(t)=36.9
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 2.8911 |
also t=2.9
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Ein Patient bekommt über eine Infusion jede Minute 3ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 1% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 7 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 178ml davon in seinem Blut?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 3 - 0.01⋅f(t)
wenn man 0.01 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.01( - f(t))
also f'(t) = 0.01(300 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=300 und der Wachstumsfaktor k=0.01 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).
| = | |||
| = | |||
| = | | |
||
| = |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 7: f(7)= ≈ 20.3
Wann wird der Wert 178?: f(t)=178
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 89.9761 |
also t=90
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.
Dazu setzen wir k = einfach in die Formel TH = - ein:
TH = - ≈ 13.863 min
