Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Von einem radioaktiven Element sind zu Beginn der Beobachtung 3g vorhanden. Nach 2 Tagen sind nur noch 2,661g übrig. a) Wie viel g sind noch nach 5 Tagen da? b) Wann sind nur noch 2g davon übrig?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 3 ist, gilt: f(0)= 3, also 3 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(2)= = 2,6608.
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ -0.06 |
also k ≈ -0.060011521299865, => f(t)=
Wert zur Zeit 5: f(5)= ≈ 2.2
Wann wird der Wert 2?: f(t)=2
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 6.7578 |
also t=6.8
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Das neu entdeckte radioaktive Element Gaußium hat eine Halbwertszeit von 499 Tagen. Zu Beginn der Beobachtung sind 10g davon vorhanden. a) Wie viel g Gaußium sind nach 375 Tagen noch da? b) Nach wie vielen Tagen ist noch 4g Gaußium da?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 10 ist, gilt: f(0)= 10, also 10 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Halbwertszeit.
Dazu stellen wir die Formel TH= um zu
k==
≈ -0.0013890725061322
=> f(t)=
Wert zur Zeit 375: f(375)= ≈ 5.9
Wann wird der Wert 4?: f(t)=4
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 659.6766 |
also t=659.7
Exponentielles Wachstum mit Prozent
Beispiel:
Ein radioaktives Element verliert jeden Tag 2% seiner Masse. a) Wie viel Prozent seiner Masse sind nach 2 Tagen noch vorhanden. b) Wann sind noch 94% der Masse da?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 100 ist, gilt: f(0)= 100, also 100 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1-p/100) = ln(0.98) ≈ -0.020202707317519
=> f(t)=
Wert zur Zeit 2: f(2)= ≈ 96
Wann wird der Wert 94?: f(t)=94
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.0631 |
also t=3.1
beschränktes Wachstum mit 2. Wert
Beispiel:
Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 28 Grad an. a) Welche Temperatur zeigt das Thermometer nach 1,5 Minuten an? b) Wann zeigt es 36,9° an?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.
Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = = =
| = | |||
| = | | | ||
| = |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(0.5)= = 28.
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 1.597 |
also k ≈ 1.5970153924355, => f(t)=
Wert zur Zeit 1.5: f(1.5)= ≈ 35.2
Wann wird der Wert 36.9?: f(t)=36.9
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.3177 |
also t=3.3
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Nach dem Abi vergisst Klaus-Dieter jeden Monat 10% seines Englischwortschatzes. Zum Zeitpunkt des Abiturs betrug dieser noch 2662 Wörter. Aus Langeweile entschließt er sich, wieder regelmäßig jeden Monat 80 Wörter zu lernen. a) Wie groß ist sein englischer Wortschatz nach 8 Monaten? b) Wann beträgt dieser 1870 Wörter ?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 80 - 0.1⋅f(t)
wenn man 0.1 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.1( - f(t))
also f'(t) = 0.1(800 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=800 und der Wachstumsfaktor k=0.1 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=2662 ein (Punktprobe).
| = | |||
| = | |||
| = | | | ||
| = |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 8: f(8)= ≈ 1636.7
Wann wird der Wert 1870?: f(t)=1870
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 5.5399 |
also t=5.5
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.
Dazu setzen wir k = einfach in die Formel TH = - ein:
TH = - ≈ 6.931 min
