Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Das Wachstum einer Algenkultur in einem Teich kann als exponentiell angenommen werden. Zu Beginn der Beobachtung sind 14 Millionen Algen im Teich. Nach 2 Stunden sind es 15,166 Millionen. a) Wie viel Millionen Algen gibt es nach 4 Stunden? b) Wann waren es 19 Milionen Algen?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 14 ist, gilt: f(0)= 14, also 14 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(2)= = 15,166.
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.04 |
also k ≈ 0.040005968984692, => f(t)=
Wert zur Zeit 4: f(4)= ≈ 16.4
Wann wird der Wert 19?: f(t)=19
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 7.6345 |
also t=7.6
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Ein Finanzberater bewirbt eine Geldanlage, bei der sich das Geld immer alle 19 Jahre verdoppelt. Herr Q. legt 13-Tausend € an. a) Wie hoch ist das Vermögen nach 17 Jahren (in Tausend Euro)? b) Wann ist das Vermögen auf 21,67-Tausend Euro gestiegen?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 13 ist, gilt: f(0)= 13, also 13 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Verdopplungszeit.
Dazu stellen wir die Formel TV= um zu
k==
≈ 0.036481430555787
=> f(t)=
Wert zur Zeit 17: f(17)= ≈ 24.2
Wann wird der Wert 21.67?: f(t)=21.67
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 14.0063 |
also t=14
Exponentielles Wachstum mit Prozent
Beispiel:
Ein radioaktives Element verliert jeden Tag 12% seiner Masse. a) Wie viel Prozent seiner Masse sind nach 2 Tagen noch vorhanden. b) Wann sind noch 52% der Masse da?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 100 ist, gilt: f(0)= 100, also 100 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1-p/100) = ln(0.88) ≈ -0.12783337150988
=> f(t)=
Wert zur Zeit 2: f(2)= ≈ 77.4
Wann wird der Wert 52?: f(t)=52
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 5.1168 |
also t=5.1
beschränktes Wachstum mit 2. Wert
Beispiel:
Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 28 Grad an. a) Welche Temperatur zeigt das Thermometer nach 1,5 Minuten an? b) Wann zeigt es 36,9° an?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.
Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = = =
| = | |||
| = | | | ||
| = |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(0.5)= = 28.
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 1.597 |
also k ≈ 1.5970153924355, => f(t)=
Wert zur Zeit 1.5: f(1.5)= ≈ 35.2
Wann wird der Wert 36.9?: f(t)=36.9
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.3177 |
also t=3.3
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Ein Patient bekommt über eine Infusion jede Minute 8ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 5% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 9 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 81ml davon in seinem Blut?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 8 - 0.05⋅f(t)
wenn man 0.05 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.05( - f(t))
also f'(t) = 0.05(160 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=160 und der Wachstumsfaktor k=0.05 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).
| = | |||
| = | |||
| = | | |
||
| = |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 9: f(9)= ≈ 58
Wann wird der Wert 81?: f(t)=81
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 14.1145 |
also t=14.1
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am negativen Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentiellen Zerfall handeln muss. Somit suchen wir die Halbwertszeit.
Dazu setzen wir k = einfach in die Formel TH = - ein:
TH = - ≈ 69.315 min
