Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Exponentielles Wachstum mit 2. Wert
Beispiel:
Der Schalldruckpegel gibt an wie laut etwas ist. Die zugehörige Maßeinheit ist dB (Dezibel). Der leiseste für den Menschen noch wahrnehmbare Schall ist 0 Dezibel. Dabei ist der Schalldruck 0,00002 Pa (Pascal). Mit steigendem Schalldruckpegel (in dB) wächst der Schalldruck (in Pa) exponentiell. Ein Fernseher auf Zimmerlautstärke erzeugt einen Schalldruckpegel von 60 dB, was einem Schalldruck von 0,02 Pa entspricht. a) Wie hoch ist der Schalldruck bei 70 dB? b) Wie viel dB misst man bei einem Schalldruck von 6 Pa?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(60)= = 0,02.
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.1151 |
also k ≈ 0.1151292546497, => f(t)=
Wert zur Zeit 70: f(70)= ≈ 0.1
Wann wird der Wert 6?: f(t)=6
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 109.5703 |
also t=109.6
Exponentielles Wachstum mit Halbwertszeit
Beispiel:
Ein Finanzberater bewirbt eine Geldanlage, bei der sich das Geld immer alle 17 Jahre verdoppelt. Herr Q. legt 6-Tausend € an. a) Wie hoch ist das Vermögen nach 49 Jahren (in Tausend Euro)? b) Wann ist das Vermögen auf 20-Tausend Euro gestiegen?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 6 ist, gilt: f(0)= 6, also 6 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Wir berechnen k über die Verdopplungszeit.
Dazu stellen wir die Formel TV= um zu
k==
≈ 0.04077336356235
=> f(t)=
Wert zur Zeit 49: f(49)= ≈ 44.2
Wann wird der Wert 20?: f(t)=20
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 29.5287 |
also t=29.5
Exponentielles Wachstum mit Prozent
Beispiel:
Bei einer Bakterienkultur geht man davon aus, dass sie jede Stunde um 14% wächst. Zu Beginn der Beobachtung werden 14 Milliarden geschätzt. a) Aus wie vielen Milliarden besteht die Bakterienkultur nach 5 Stunden? b) Wann sind es 20 Millarden?
Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Da der Anfangsbestand 14 ist, gilt: f(0)= 14, also 14 = = =
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu nutzen wir die Formel k= ln(1+p/100) = ln(1.14) ≈ 0.1310282624064
=> f(t)=
Wert zur Zeit 5: f(5)= ≈ 27
Wann wird der Wert 20?: f(t)=20
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 2.7227 |
also t=2.7
beschränktes Wachstum mit 2. Wert
Beispiel:
Ein Wasserboiler schaltet ab wenn er das Wasser auf 59° erhitzt hat. Nach 5 min ist das Wasser auf 54,01° abgekühlt. Die Temperatur des Raumes, in dem sich der Boiler befindet ist 20°. a) Wie warm war das Wasser nach 2 Minuten?b) Wie lange ist der Boiler ausgeschaltet, wenn er bei einer Wassertemperatur von 50° wieder automatisch einschaltet?
Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= .
Aus dem Text entnehmen wir, dass die Schranke S=20 sein muss.
Da der Anfangsbestand 59 ist, gilt: f(0)= 59, also 59 = = =
| = | |||
| = | | | ||
| = |
somit gilt: f(t)= , wir müssen also nur noch k bestimmen.
Dazu setzen wir einfach die zweite Information ein: f(5)= = 54,01.
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 0.0274 |
also k ≈ 0.027393171014631, => f(t)=
Wert zur Zeit 2: f(2)= ≈ 56.9
Wann wird der Wert 50?: f(t)=50
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 9.5753 |
also t=9.6
beschränktes Wachstum mit Differentialgleichung
Beispiel:
Ein Patient bekommt über eine Infusion jede Minute 8ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 5% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 5 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 27ml davon in seinem Blut?
Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:
f'(t) = 8 - 0.05⋅f(t)
wenn man 0.05 ausklammert ergibt sich folgende Gleichung
f'(t) = 0.05( - f(t))
also f'(t) = 0.05(160 - f(t))
das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))
Wir wissen nun also, dass die Schranke S=160 und der Wachstumsfaktor k=0.05 sein müssen.
Der Funktionsterm muss also die Form f(t)= haben.
Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).
| = | |||
| = | |||
| = | | |
||
| = |
somit haben wir nun unseren Funktionsterm: f(t)=
Wert zur Zeit 5: f(5)= ≈ 35.4
Wann wird der Wert 27?: f(t)=27
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | ≈ 3.6965 |
also t=3.7
Halbwerts- + Verdopplungszeit best.
Beispiel:
Gegeben ist die Bestandsfunktion f mit (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.
Am postiven Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent () erkennen wir, dass es sich um exponentielles Wachstum handeln muss. Somit suchen wir die Verdopplungszeit.
Dazu setzen wir k = einfach in die Formel TV = ein:
TV = ≈ 8.664 min
