nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentielles Wachstum mit 2. Wert

Beispiel:

Das Wachstum einer Algenkultur in einem Teich kann als exponentiell angenommen werden. Zu Beginn der Beobachtung sind 12 Millionen Algen im Teich. Nach 2 Stunden sind es 14,082 Millionen. a) Wie viel Millionen Algen gibt es nach 5 Stunden? b) Wann waren es 17 Milionen Algen?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 12 ist, gilt: f(0)= 12, also 12 = a · e k · 0 = a = a

somit gilt: f(t)= 12 e k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(2)= 12 e k · 2 = 14,0821.

12 e 2k = 14,0821 |:12
e 2k = 1,1735 |ln(⋅)
2k = ln( 1,1735 ) |:2
k = 1 2 ln( 1,1735 ) ≈ 0.08

also k ≈ 0.079995368154471, => f(t)= 12 e 0,08t


Wert zur Zeit 5: f(5)= 12 e 0,085 ≈ 17.9


Wann wird der Wert 17?: f(t)=17

12 e 0,08t = 17 |:12
e 0,08t = 17 12 |ln(⋅)
0,08t = ln( 17 12 ) |:0,08
t = 1 0,08 ln( 17 12 ) ≈ 4.3538

also t=4.4

Exponentielles Wachstum mit Halbwertszeit

Beispiel:

Der Schalldruck (in Pa) verdoppelt sich alle 6,02 Db (Dezibel) Schalldruckpegel. Bei 0 Db ist der Schalldruck 0,00002 Pa. a) Welcher Schalldruck ist bei 71 Db? b) Wie hoch ist der Schalldruckpegel in Db wenn der Schalldruck 83 Pa beträgt?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 0.00002 ist, gilt: f(0)= 0.00002, also 0.00002 = a · e k · 0 = a = a

somit gilt: f(t)= 0,00002 e k · t , wir müssen also nur noch k bestimmen.

Wir berechnen k über die Verdopplungszeit. Dazu stellen wir die Formel TV= ln(2) k um zu
k= ln(2) T = ln(2) 6.02 ≈ 0.11514072766777


=> f(t)= 0,00002 e 0,1151t


Wert zur Zeit 71: f(71)= 0,00002 e 0,115171 ≈ 0.1


Wann wird der Wert 83?: f(t)=83

0,00002 e 0,1151t = 83 |:0,00002
e 0,1151t = 4150000 |ln(⋅)
0,1151t = ln( 4150000 ) |:0,1151
t = 1 0,1151 ln( 4150000 ) ≈ 132.3475

also t=132.3

Exponentielles Wachstum mit Prozent

Beispiel:

Bei einer Bakterienkultur geht man davon aus, dass sie jede Stunde um 13% wächst. Zu Beginn der Beobachtung werden 18 Milliarden geschätzt. a) Aus wie vielen Milliarden besteht die Bakterienkultur nach 4 Stunden? b) Wann sind es 27 Millarden?

Lösung einblenden

Da wir von exponentiellem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= a · e k · t .

Da der Anfangsbestand 18 ist, gilt: f(0)= 18, also 18 = a · e k · 0 = a = a

somit gilt: f(t)= 18 e k · t , wir müssen also nur noch k bestimmen.

Dazu nutzen wir die Formel k= ln(1+p/100) = ln(1.13) ≈ 0.12221763272425


=> f(t)= 18 e 0,1222t


Wert zur Zeit 4: f(4)= 18 e 0,12224 ≈ 29.3


Wann wird der Wert 27?: f(t)=27

18 e 0,1222t = 27 |:18
e 0,1222t = 3 2 |ln(⋅)
0,1222t = ln( 3 2 ) |:0,1222
t = 1 0,1222 ln( 3 2 ) ≈ 3.318

also t=3.3

beschränktes Wachstum mit 2. Wert

Beispiel:

Die Körpertemperatur eines Menschen wird mit dem Fieberthermometer gemessen. Dabei ist die Geschwindigkeit, mit der die Temperatur des Thermometers steigt, proportional zur Differenz zwischen tatsächlicher Temperatur und der des Thermometers. Bei der Untersuchung eines gesunden Menschen, dessen Körpertemperatur 37,0 Grad beträgt, steigt die Anzeige des Thermometers in der ersten halben Minute von 17,0 Grad auf 30 Grad an. a) Welche Temperatur zeigt das Thermometer nach 3,5 Minuten an? b) Wann zeigt es 36,9° an?

Lösung einblenden

Da wir von beschränktem Wachstum ausgehen, haben wir einen Funktionsterm der Form f(t)= S - c · e -k · t .

Aus dem Text entnehmen wir, dass die Schranke S=37 sein muss.

Da der Anfangsbestand 17 ist, gilt: f(0)= 17, also 17 = 37 - c · e -k · 0 = 37 - c = 37 - c

17 = 37 - c
17 = -c +37 | -17 + c
c = 20

somit gilt: f(t)= 37 -20 e -k · t , wir müssen also nur noch k bestimmen.

Dazu setzen wir einfach die zweite Information ein: f(0.5)= 37 -20 e -k · 0,5 = 30.

37 -20 e -0,5k = 29,9998
-20 e -0,5k +37 = 29,9998 | -37
-20 e -0,5k = -7,0002 |:-20
e -0,5k = 0,35 |ln(⋅)
-0,5k = ln( 0,35 ) |:-0,5
k = - 1 0,5 ln( 0,35 ) ≈ 2.0996

also k ≈ 2.0996442489974, => f(t)= 37 -20 e -2,0996t


Wert zur Zeit 3.5: f(3.5)= 37 -20 e -2,09963,5 ≈ 37


Wann wird der Wert 36.9?: f(t)=36.9

37 -20 e -2,0996t = 36,9
-20 e -2,0996t +37 = 36,9 | -37
-20 e -2,0996t = -0,1 |:-20
e -2,0996t = 0,005 |ln(⋅)
-2,0996t = ln( 0,005 ) |:-2,0996
t = - 1 2,0996 ln( 0,005 ) ≈ 2.5235

also t=2.5

beschränktes Wachstum mit Differentialgleichung

Beispiel:

Ein Patient bekommt über eine Infusion jede Minute 2ml eines Wirkstoff ins Blut verabreicht. Gleichzeitig baut sein Körper jede Minute 8% des Wirkstoffs wieder ab. a) Wie viel Wirkstoff ist 15 Minuten nach dem erstmaligen Anlegen der Infusion in seinem Blut. b) Wann sind 14ml davon in seinem Blut?

Lösung einblenden

Wir können aus der Aufgabe lesen, dass immer ein konstanter Zuwachs und eine prozentuale Abnahme pro Zeitheit stattfindet. Wir können also für die (momentane) Änderungsrate f'(t) folgendes festhalten:

f'(t) = 2 - 0.08⋅f(t)

wenn man 0.08 ausklammert ergibt sich folgende Gleichung

f'(t) = 0.08( 2 0.08 - f(t))

also f'(t) = 0.08(25 - f(t))

das ist nun ein Differtialgleichung des beschränkten Wachstums: f'(t) = k(S - f(t))

Wir wissen nun also, dass die Schranke S=25 und der Wachstumsfaktor k=0.08 sein müssen.

Der Funktionsterm muss also die Form f(t)= 25 - c · e -0,08t haben.

Um c noch bestimmen zu können, setzen wir einfach den Startwert f(0)=0 ein (Punktprobe).

0 = 25 - c
0 = -c +25 |0 + c
c = 25

somit haben wir nun unseren Funktionsterm: f(t)= 25 -25 e -0,08x


Wert zur Zeit 15: f(15)= 25 -25 e -0,0815 ≈ 17.5


Wann wird der Wert 14?: f(t)=14

25 -25 e -0,08t = 14
-25 e -0,08t +25 = 14 | -25
-25 e -0,08t = -11 |:-25
e -0,08t = 11 25 |ln(⋅)
-0,08t = ln( 11 25 ) |:-0,08
t = - 1 0,08 ln( 11 25 ) ≈ 10.2623

also t=10.3

Halbwerts- + Verdopplungszeit best.

Beispiel:

Gegeben ist die Bestandsfunktion f mit f(t)= 5 e 0,03t (t in min). Bestimme die Halbwertszeit bzw. die Verdopplungszeit.

Lösung einblenden

Am postiven Vorzeichen der Wachstumskonstante k, also des Koeffizienten im Exponent (0,03 ) erkennen wir, dass es sich um exponentielles Wachstum handeln muss. Somit suchen wir die Verdopplungszeit.

Dazu setzen wir k = 0,03 einfach in die Formel TV = ln(2) k ein:

TV = ln(2) 0,03 23.105 min