- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Tangente anlegen (ganzzahlige Koef.)
Beispiel:
Berechne die Tangentengleichung an den Graphen von f mit an der Stelle x=
Zuerst braucht man die Ableitung von , also
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y= x+c besitzt.
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
=
=
=
Wir erhalten so also den Punkt B(
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
⋅x +
Tangente anlegen (nur ganzrational)
Beispiel:
Berechne die Tangentengleichung an den Graphen von f mit an der Stelle x= :
Zuerst braucht man die Ableitung von , also
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
Normale anlegen
Beispiel:
Berechne die Gleichung der Normalen an den Graphen von f mit
Zuerst braucht man die Ableitung von
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
Um mit der Tangentensteigung die Steigung der darauf senkrecht stehenden Normalen zu berechnen, verwenden wir die Beziehung:
mn= -
also mn=
Damit wissen wir nun schon, dass die Normale die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Normale: y=
Steigungswinkel
Beispiel:
Berechne den Steigungswinkel der Tangente an den Graphen von f mit
Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).
Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:
=>
f'(-2) =
Für den Steigungswinkel α einer Geraden mit Steigung m gilt:
tan(α) = m.
Also können wir den Steigungswinkel α berechnen mit:
α = arctan(m) = arctan(f'(-2)) = arctan(
Steigungswinkel rückwärts
Beispiel:
In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 45° an den Graph der Funktion f mit
Bestimme x0.
Wenn der Steigungswinkel α = 45° ist, muss die Steigung dieser Tangente m = tan(45°) ≈ 1 betragen.
Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 1 ist.
Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 1 gelten.
Wir leiten somit f mit
f'(x) =
Es muss gelten:
|
= |
|
|
|
|
= | |: |
|
|
= | |
|
|
|
= |
|
=
|
Die gesuchte Stelle ist somit x0 ≈ 2.
Nullstelle einer Tangente
Beispiel:
Bestimme den x-Wert, an dem die Tangente an den Graphen von f mit
Zuerst braucht man die Ableitung von
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
Jetzt brauchen wir noch die Nullstelle dieser linearen (Tangenten-)Funktion: t: y =
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Die gesuchte Nullstelle der Tangente ist somit bei x =
Nullstelle einer Tangente Anwendung
Beispiel:
Das Wasservolumen in einem Wassertank lässt sich näherungsweise durch den Term
Nach 2 Sekunden bleibt die momentane Änderungsrate des Wasservolumens konstant bei dem Wert, den sie zum Zeitpunkt t=2s hatte.
Wann ist der Tank leer?
Wir brauchen also die Tangente an den Graph von f im Punkt B(2|f(2)):
Zuerst braucht man die Ableitung von
=
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen t-Wert in die Ableitung ein:
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(2|
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
Jetzt brauchen wir noch die Nullstelle dieser linearen (Tangenten-)Funktion: t: y =
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Die gesuchte Nullstelle der Tangente ist somit bei t =