nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 3 e -3x soll im Intervall [0,1] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 1 ( 3 e -3x ) 2 x
= π 0 1 3 e -3x x

= π [ - e -3x ] 0 1

= π · ( - e -31 + e -30 )

= π · ( - e -3 + e 0 )

= π · ( - e -3 +1 )


≈ 2,985

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 12 x 2 und g(x)= 12 ( 3x +1 ) 2 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,3] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 3 ( 12 x 2 ) 2 x - π 1 3 ( 12 ( 3x +1 ) 2 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 3 ( ( 12 x 2 ) 2 - ( 12 ( 3x +1 ) 2 ) 2 ) x

= π 1 3 ( 144 x 4 - 144 ( 3x +1 ) 4 ) x

= π 1 3 ( - 144 ( 3x +1 ) 4 + 144 x 4 ) x
= π 1 3 ( -144 ( 3x +1 ) -4 +144 x -4 ) x

= π [ 16 ( 3x +1 ) -3 -48 x -3 ] 1 3

= π [ 16 ( 3x +1 ) 3 - 48 x 3 ] 1 3

= π · ( 16 ( 33 +1 ) 3 - 48 3 3 - ( 16 ( 31 +1 ) 3 - 48 1 3 ) )

= π · ( 16 ( 9 +1 ) 3 -48( 1 27 ) - ( 16 ( 3 +1 ) 3 -481 ) )

= π · ( 16 10 3 - 16 9 - ( 16 4 3 -48 ) )

= π · ( 16( 1 1000 ) - 16 9 - ( 16( 1 64 ) -48 ) )

= π · ( 2 125 - 16 9 - ( 1 4 -48 ) )

= π · ( 18 1125 - 2000 1125 - ( 1 4 - 192 4 ) )

= π · ( - 1982 1125 -1 · ( - 191 4 ) )

= π · ( - 1982 1125 + 191 4 )

= π · 206947 4500

= 206947 4500 π


≈ 144,476

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 2x +7 x +2 und der Geraden y = 2 rotiert im Intervall [0,3] um diese Gerade y = 2 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 2 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-2 = 2x +7 x +2 -2 = 2x +7 x +2 - 2( x +2 ) x +2
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 3 ( 2x +7 x +2 - 2( x +2 ) x +2 ) 2 x

= π 0 3 ( 2x +7 -2x -4 x +2 ) 2 x

= π 0 3 ( 3 x +2 ) 2 x

= π 0 3 3 2 · 1 ( x +2 ) 2 x

= π 0 3 9 ( x +2 ) 2 x
= π 0 3 9 ( x +2 ) -2 x

= π [ -9 ( x +2 ) -1 ] 0 3

= π [ - 9 x +2 ] 0 3

= π · ( - 9 3 +2 + 9 0 +2 )

= π · ( - 9 5 + 9 2 )

= π · ( -9( 1 5 ) +9( 1 2 ) )

= π · ( - 9 5 + 9 2 )

= π · ( - 18 10 + 45 10 )

= π · 27 10

= 27 10 π


≈ 8,482