nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 2 e -3x soll im Intervall [0,3] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 3 ( 2 e -3x ) 2 x
= π 0 3 4 e -6x x

= π [ - 2 3 e -6x ] 0 3

= π · ( - 2 3 e -63 + 2 3 e -60 )

= π · ( - 2 3 e -18 + 2 3 e 0 )

= π · ( - 2 3 e -18 + 2 3 )


≈ 2,094

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 5 x und g(x)= 5 2x +1 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 5 x ) 2 x - π 1 2 ( 5 2x +1 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 5 x ) 2 - ( 5 2x +1 ) 2 ) x

= π 1 2 ( 25 x 2 - 25 ( 2x +1 ) 2 ) x

= π 1 2 ( - 25 ( 2x +1 ) 2 + 25 x 2 ) x
= π 1 2 ( -25 ( 2x +1 ) -2 +25 x -2 ) x

= π [ 25 2 ( 2x +1 ) -1 -25 x -1 ] 1 2

= π [ 25 2( 2x +1 ) - 25 x ] 1 2

= π · ( 25 2( 22 +1 ) - 25 2 - ( 25 2( 21 +1 ) - 25 1 ) )

= π · ( 25 2( 4 +1 ) -25( 1 2 ) - ( 25 2( 2 +1 ) -251 ) )

= π · ( 25 2 5 - 25 2 - ( 25 2 3 -25 ) )

= π · ( 25 2 ( 1 5 ) - 25 2 - ( 25 2 ( 1 3 ) -25 ) )

= π · ( 5 2 - 25 2 - ( 25 6 -25 ) )

= π · ( -10 - ( 25 6 - 150 6 ) )

= π · ( -10 -1 · ( - 125 6 ) )

= π · ( -10 + 125 6 )

= π · 65 6

= 65 6 π


≈ 34,034

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 2x +2 und der Geraden y = 1 rotiert im Intervall [0,2] um diese Gerade y = 1 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 1 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-1 = 2x +2 -1
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 2 ( 2x +2 -1 ) 2 x

= π 0 2 ( 2x +1 ) 2 x

= π [ 1 6 ( 2x +1 ) 3 ] 0 2

= π · ( 1 6 ( 22 +1 ) 3 - 1 6 ( 20 +1 ) 3 )

= π · ( 1 6 ( 4 +1 ) 3 - 1 6 ( 0 +1 ) 3 )

= π · ( 1 6 5 3 - 1 6 1 3 )

= π · ( 1 6 125 - 1 6 1 )

= π · ( 125 6 - 1 6 )

= π · 62 3

= 62 3 π


≈ 64,926