nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 2 e -2x soll im Intervall [0,1] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 1 ( 2 e -2x ) 2 x
= π 0 1 2 e -2x x

= π [ - e -2x ] 0 1

= π · ( - e -21 + e -20 )

= π · ( - e -2 + e 0 )

= π · ( - e -2 +1 )


≈ 2,716

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 4 x und g(x)= 4 3x +1 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 4 x ) 2 x - π 1 2 ( 4 3x +1 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 4 x ) 2 - ( 4 3x +1 ) 2 ) x

= π 1 2 ( 16 x 2 - 16 ( 3x +1 ) 2 ) x

= π 1 2 ( - 16 ( 3x +1 ) 2 + 16 x 2 ) x
= π 1 2 ( -16 ( 3x +1 ) -2 +16 x -2 ) x

= π [ 16 3 ( 3x +1 ) -1 -16 x -1 ] 1 2

= π [ 16 3( 3x +1 ) - 16 x ] 1 2

= π · ( 16 3( 32 +1 ) - 16 2 - ( 16 3( 31 +1 ) - 16 1 ) )

= π · ( 16 3( 6 +1 ) -16( 1 2 ) - ( 16 3( 3 +1 ) -161 ) )

= π · ( 16 3 7 -8 - ( 16 3 4 -16 ) )

= π · ( 16 3 ( 1 7 ) -8 - ( 16 3 ( 1 4 ) -16 ) )

= π · ( 16 21 -8 - ( 4 3 -16 ) )

= π · ( 16 21 - 168 21 - ( 4 3 - 48 3 ) )

= π · ( - 152 21 -1 · ( - 44 3 ) )

= π · ( - 152 21 + 44 3 )

= π · 52 7

= 52 7 π


≈ 23,338

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 3x +3 und der Geraden y = 1 rotiert im Intervall [0,2] um diese Gerade y = 1 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 1 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-1 = 3x +3 -1
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 2 ( 3x +3 -1 ) 2 x

= π 0 2 ( 3x +2 ) 2 x

= π [ 1 9 ( 3x +2 ) 3 ] 0 2

= π · ( 1 9 ( 32 +2 ) 3 - 1 9 ( 30 +2 ) 3 )

= π · ( 1 9 ( 6 +2 ) 3 - 1 9 ( 0 +2 ) 3 )

= π · ( 1 9 8 3 - 1 9 2 3 )

= π · ( 1 9 512 - 1 9 8 )

= π · ( 512 9 - 8 9 )

= π · 56

= 56π


≈ 175,929