nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 2 x 3 + x 2 +3x soll im Intervall [0,3] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 3 ( 2 x 3 + x 2 +3x ) 2 x
= π 0 3 ( 2 x 3 + x 2 +3x ) x

= π [ 1 2 x 4 + 1 3 x 3 + 3 2 x 2 ] 0 3

= π · ( 1 2 3 4 + 1 3 3 3 + 3 2 3 2 - ( 1 2 0 4 + 1 3 0 3 + 3 2 0 2 ) )

= π · ( 1 2 81 + 1 3 27 + 3 2 9 - ( 1 2 0 + 1 3 0 + 3 2 0 ) )

= π · ( 81 2 +9 + 27 2 - (0+0+0) )

= π · ( 81 2 + 18 2 + 27 2 +0 )

= π · ( 63 )

= 63π


≈ 197,92

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 2 x und g(x)= 2 3x +4 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 2 x ) 2 x - π 1 2 ( 2 3x +4 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 2 x ) 2 - ( 2 3x +4 ) 2 ) x

= π 1 2 ( 4 x 2 - 4 ( 3x +4 ) 2 ) x

= π 1 2 ( - 4 ( 3x +4 ) 2 + 4 x 2 ) x
= π 1 2 ( -4 ( 3x +4 ) -2 +4 x -2 ) x

= π [ 4 3 ( 3x +4 ) -1 -4 x -1 ] 1 2

= π [ 4 3( 3x +4 ) - 4 x ] 1 2

= π · ( 4 3( 32 +4 ) - 4 2 - ( 4 3( 31 +4 ) - 4 1 ) )

= π · ( 4 3( 6 +4 ) -4( 1 2 ) - ( 4 3( 3 +4 ) -41 ) )

= π · ( 4 3 10 -2 - ( 4 3 7 -4 ) )

= π · ( 4 3 ( 1 10 ) -2 - ( 4 3 ( 1 7 ) -4 ) )

= π · ( 2 15 -2 - ( 4 21 -4 ) )

= π · ( 2 15 - 30 15 - ( 4 21 - 84 21 ) )

= π · ( - 28 15 -1 · ( - 80 21 ) )

= π · ( - 28 15 + 80 21 )

= π · 68 35

= 68 35 π


≈ 6,104

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= e 0,4x und der Geraden y = 1 rotiert im Intervall [0,1] um diese Gerade y = 1 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 1 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-1 = e 0,4x -1
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 1 ( e 0,4x -1 ) 2 x

= π 0 1 ( e 0,8x -2 e 0,4x +1 ) x

= π [ 5 4 e 0,8x -5 e 0,4x + x ] 0 1

= π · ( 5 4 e 0,81 -5 e 0,41 +1 - ( 5 4 e 0,80 -5 e 0,40 +0) )

= π · ( 5 4 e 0,8 -5 e 0,4 +1 - ( 5 4 e 0 -5 e 0 +0) )

= π · ( 5 4 e 0,8 -5 e 0,4 +1 - ( 5 4 -5 +0) )

= π · ( 5 4 e 0,8 -5 e 0,4 +1 - ( 5 4 - 20 4 +0) )

= π · ( 5 4 e 0,8 -5 e 0,4 +1 -1 · ( - 15 4 ) )

= π · ( 5 4 e 0,8 -5 e 0,4 +1 + 15 4 )

= π · ( 5 4 e 0,8 -5 e 0,4 + 19 4 )


≈ 0,229