nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= e -2x soll im Intervall [0,1] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 1 ( e -2x ) 2 x
= π 0 1 e -2x x

= π [ - 1 2 e -2x ] 0 1

= π · ( - 1 2 e -21 + 1 2 e -20 )

= π · ( - 1 2 e -2 + 1 2 e 0 )

= π · ( - 1 2 e -2 + 1 2 )


≈ 1,358

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 2 x und g(x)= 2 x +1 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 2 x ) 2 x - π 1 2 ( 2 x +1 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 2 x ) 2 - ( 2 x +1 ) 2 ) x

= π 1 2 ( 4 x 2 - 4 ( x +1 ) 2 ) x

= π 1 2 ( - 4 ( x +1 ) 2 + 4 x 2 ) x
= π 1 2 ( -4 ( x +1 ) -2 +4 x -2 ) x

= π [ 4 ( x +1 ) -1 -4 x -1 ] 1 2

= π [ 4 x +1 - 4 x ] 1 2

= π · ( 4 2 +1 - 4 2 - ( 4 1 +1 - 4 1 ) )

= π · ( 4 3 -4( 1 2 ) - ( 4 2 -41 ) )

= π · ( 4( 1 3 ) -2 - ( 4( 1 2 ) -4 ) )

= π · ( 4 3 -2 - ( 2 -4 ) )

= π · ( 4 3 - 6 3 -1 · ( -2 ) )

= π · ( - 2 3 +2 )

= π · ( - 2 3 + 6 3 )

= π · 4 3

= 4 3 π


≈ 4,189

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= ( x +1 ) 2 +3 ( x +1 ) 2 und der Geraden y = 1 rotiert im Intervall [0,2] um diese Gerade y = 1 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 1 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-1 = ( x +1 ) 2 +3 ( x +1 ) 2 -1 = ( x +1 ) 2 +3 ( x +1 ) 2 - ( x +1 ) 2 ( x +1 ) 2
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 2 ( ( x +1 ) 2 +3 ( x +1 ) 2 - ( x +1 ) 2 ( x +1 ) 2 ) 2 x

= π 0 2 ( ( x +1 ) 2 +3 - ( x +1 ) 2 ( x +1 ) 2 ) 2 x

= π 0 2 ( 3 ( x +1 ) 2 ) 2 x

= π 0 2 3 2 · 1 ( x +1 ) 4 x

= π 0 2 9 ( x +1 ) 4 x
= π 0 2 9 ( x +1 ) -4 x

= π [ -3 ( x +1 ) -3 ] 0 2

= π [ - 3 ( x +1 ) 3 ] 0 2

= π · ( - 3 ( 2 +1 ) 3 + 3 ( 0 +1 ) 3 )

= π · ( - 3 3 3 + 3 1 3 )

= π · ( -3( 1 27 ) +31 )

= π · ( - 1 9 +3 )

= π · ( - 1 9 + 27 9 )

= π · 26 9

= 26 9 π


≈ 9,076