nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 32 ( 2x +4 ) 2 soll im Intervall [0,2] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 2 ( 32 ( 2x +4 ) 2 ) 2 x
= π 0 2 1024 ( 2x +4 ) 4 x
= π 0 2 1024 ( 2x +4 ) -4 x

= π [ - 512 3 ( 2x +4 ) -3 ] 0 2

= π [ - 512 3 ( 2x +4 ) 3 ] 0 2

= π · ( - 512 3 ( 22 +4 ) 3 + 512 3 ( 20 +4 ) 3 )

= π · ( - 512 3 ( 4 +4 ) 3 + 512 3 ( 0 +4 ) 3 )

= π · ( - 512 3 8 3 + 512 3 4 3 )

= π · ( - 512 3 ( 1 512 ) + 512 3 ( 1 64 ) )

= π · ( - 1 3 + 8 3 )

= π · 7 3

= 7 3 π


≈ 7,33

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 6 x 2 und g(x)= 6 ( x +1 ) 2 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 6 x 2 ) 2 x - π 1 2 ( 6 ( x +1 ) 2 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 6 x 2 ) 2 - ( 6 ( x +1 ) 2 ) 2 ) x

= π 1 2 ( 36 x 4 - 36 ( x +1 ) 4 ) x

= π 1 2 ( - 36 ( x +1 ) 4 + 36 x 4 ) x
= π 1 2 ( -36 ( x +1 ) -4 +36 x -4 ) x

= π [ 12 ( x +1 ) -3 -12 x -3 ] 1 2

= π [ 12 ( x +1 ) 3 - 12 x 3 ] 1 2

= π · ( 12 ( 2 +1 ) 3 - 12 2 3 - ( 12 ( 1 +1 ) 3 - 12 1 3 ) )

= π · ( 12 3 3 -12( 1 8 ) - ( 12 2 3 -121 ) )

= π · ( 12( 1 27 ) - 3 2 - ( 12( 1 8 ) -12 ) )

= π · ( 4 9 - 3 2 - ( 3 2 -12 ) )

= π · ( 8 18 - 27 18 - ( 3 2 - 24 2 ) )

= π · ( - 19 18 -1 · ( - 21 2 ) )

= π · ( - 19 18 + 21 2 )

= π · ( - 19 18 + 189 18 )

= π · ( - 19 18 + 21 2 )

= π · 85 9

= 85 9 π


≈ 29,671

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= x +4 und der Geraden y = 3 rotiert im Intervall [0,3] um diese Gerade y = 3 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 3 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-3 = x +4 -3
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 3 ( x +4 -3 ) 2 x

= π 0 3 ( x +1 ) 2 x

= π [ 1 3 ( x +1 ) 3 ] 0 3

= π · ( 1 3 ( 3 +1 ) 3 - 1 3 ( 0 +1 ) 3 )

= π · ( 1 3 4 3 - 1 3 1 3 )

= π · ( 1 3 64 - 1 3 1 )

= π · ( 64 3 - 1 3 )

= π · 21

= 21π


≈ 65,973