nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= x +4 soll im Intervall [-1,0] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π -1 0 ( x +4 ) 2 x

= π [ 1 3 ( x +4 ) 3 ] -1 0

= π · ( 1 3 ( 0 +4 ) 3 - 1 3 ( -1 +4 ) 3 )

= π · ( 1 3 4 3 - 1 3 3 3 )

= π · ( 1 3 64 - 1 3 27 )

= π · ( 64 3 -9 )

= π · ( 64 3 - 27 3 )

= π · 37 3

= 37 3 π


≈ 38,746

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 4 x und g(x)= 4 2x +3 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,4] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 4 ( 4 x ) 2 x - π 1 4 ( 4 2x +3 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 4 ( ( 4 x ) 2 - ( 4 2x +3 ) 2 ) x

= π 1 4 ( 16 x 2 - 16 ( 2x +3 ) 2 ) x

= π 1 4 ( - 16 ( 2x +3 ) 2 + 16 x 2 ) x
= π 1 4 ( -16 ( 2x +3 ) -2 +16 x -2 ) x

= π [ 8 ( 2x +3 ) -1 -16 x -1 ] 1 4

= π [ 8 2x +3 - 16 x ] 1 4

= π · ( 8 24 +3 - 16 4 - ( 8 21 +3 - 16 1 ) )

= π · ( 8 8 +3 -16( 1 4 ) - ( 8 2 +3 -161 ) )

= π · ( 8 11 -4 - ( 8 5 -16 ) )

= π · ( 8( 1 11 ) -4 - ( 8( 1 5 ) -16 ) )

= π · ( 8 11 -4 - ( 8 5 -16 ) )

= π · ( 8 11 - 44 11 - ( 8 5 - 80 5 ) )

= π · ( - 36 11 -1 · ( - 72 5 ) )

= π · ( - 36 11 + 72 5 )

= π · 612 55

= 612 55 π


≈ 34,957

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 3x +5 x +1 und der Geraden y = 3 rotiert im Intervall [0,1] um diese Gerade y = 3 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 3 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-3 = 3x +5 x +1 -3 = 3x +5 x +1 - 3( x +1 ) x +1
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 1 ( 3x +5 x +1 - 3( x +1 ) x +1 ) 2 x

= π 0 1 ( 3x +5 -3x -3 x +1 ) 2 x

= π 0 1 ( 2 x +1 ) 2 x

= π 0 1 2 2 · 1 ( x +1 ) 2 x

= π 0 1 4 ( x +1 ) 2 x
= π 0 1 4 ( x +1 ) -2 x

= π [ -4 ( x +1 ) -1 ] 0 1

= π [ - 4 x +1 ] 0 1

= π · ( - 4 1 +1 + 4 0 +1 )

= π · ( - 4 2 + 4 1 )

= π · ( -4( 1 2 ) +41 )

= π · ( -2 +4 )

= π · 2

= 2π


≈ 6,283