nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Hoch- und Tiefpkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Da der Graph von f ' bei x = 1 die x-Achse berührt und f ' somit keinen VZW aufweist, kann der Graph der Originalfunktion f bei x = 1 auch keinen Extrempunkt haben (Er hat dort einen Sattelpunkt).

Wendepunkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme alle Wendestellen von f im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f ' suchen.

Diese erkennen wir leicht bei x = 1.

Monotonie (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme möglichst große Intervalle, auf denen f monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion f ', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;4] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Wir erkennen: Im Intervall [4;6] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Extrempunkte der Ableitung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f'. Bestimme jeweils Typ und den x-Wert der Extrempunkte von f'' im abgebildeten Bereich.
(Die Lösungen sind ganzzahlig)

Lösung einblenden

Man erkennt am Graph von f', dass bei x = -2 eine maximale Steigung (m ≈ 4) ist. Dort hat also f'', die Ableitungsfunktion von f', einen Hochpunkt.

Bei x = 0 ist dagegen ein maximales Gefälle (m ≈ -4) in f', also ein Tiefpunkt in f'' zu erkennnen.

Minimaler Grad bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f.

Gezeichnet ist der Graph von f.

Wie groß muss der Grad von f mindestens sein?

Lösung einblenden

Man erkennt am Graph von f einen Wendepunkt bei x=-1, also muss f'' ( - die 2. Ableitung von f - ) mindestens eine Nullstelle haben und somit auch mindestens vom Grad 1 sein.

Weil bei ganzrationalen Funktionen mit jedem Ableiten der Grad um 1 verringert wird, muss der Grad der Originalfunktion f um 2 höher, also f vom Grad 3 sein.

Pkt mit paralleler Tangente (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= 5 verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung 0 hat, muss die parallele Tangente auch die Steigung m = 0 haben. Es muss also f '(x) = 0 gelten.

Am Schaubild kann man f '(1) = 0 ablesen.

Die gesuchte Stelle ist also x = 1.

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(-2) + f '(-2).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(-2) = -2 entnehmen.

Außerdem können wir natürlich f(-2) = 2 am Schaubild ablesen:

Also gilt: f(-2) + f '(-2) = 2 + ( - 2 ) = 0.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = -3 entnehmen.

Also gilt h(2) = g(f(2)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(2) = g(f(2)) = g(-3) = -3.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 0 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 0 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(2|0), der auf dem Graph von g liegt, also gilt:
0 = g(2)
Wegen 0 = h(x)= g(f(x))= g(2) gilt also f(x) = 2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =2 sind.

Diese erkennen wir bei Q1(2|2) und Q2(-2|2), also bei
x1 = 2 und x2 = -2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(2) = 1 entnehmen.

Wir suchen also f(f '(2)) = f(1).

f(1) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(2)) = f(1) = -2,5 .

Minimaler Grad bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f.

Gezeichnet ist der Graph von f.

Wie groß muss der Grad von f mindestens sein?

Lösung einblenden

Man erkennt am Graph von f 3 Extrempunkte, also muss f' ( - die Ableitung von f - ) mindestens 3 Nullstellen und somit auch mindestens Grad 3 haben.

Weil bei ganzrationalen Funktionen mit jedem Ableiten der Grad um 1 verringert wird, muss der Grad der Originalfunktion f um 1 höher, also f vom Grad 4 sein.

Produktregel am Schaubild

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(x)⋅g(x).
Bestimme h(2) und h'(2).

Lösung einblenden

Wir können der Zeichnung rechts f(2) = -2 und g(2) = -2 entnehmen.

Also gilt h(2)= f(2)⋅g(2) = ( - 2 )( - 2 ) = 4

Für die Ableitung h'(x) gilt nach der Produktregel h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x)

Also h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2)

Da ja g (in blau gezeichnet) die Tangente an f in x=2 ist, können wir am Graph von g sowohl f'(2) als auch g'(2) als Steigung m=2 der Geraden ablesen, also gilt f'(2) = g'(2) = 2.

Somit gilt:
h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2)
= 2( - 2 ) + ( - 2 )2
= -8.