nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

nach x Minuten

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (30|20|20) (alle Angaben in Meter). Nach 2s ist es im Punkt B (170|-60|100) angelangt. Wie hoch ist die Geschwindigkeit des Flugzeugs in km/h?
An welchem Ort befindet sich das Flugzeug nach 5s?
Wie weit ist das Flugzeug dann geflogen?
Berechne den Winkel mit dem das Flugzeug steigt?
Wann hat das Flugzeug die Höhe von 900m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 2s den Vektor AB = ( 140 -80 80 ) zurück.
In 1s legt es also den Vektor 1 2 ( 140 -80 80 ) = ( 70 -40 40 ) zurück. Dieser Vektor hat die Länge = 70 2 + (-40)2 + 40 2 = 8100 = 90.
Die Geschwindigkeit ist also v=90 m s = 324 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( 30 20 20 ) +t ( 70 -40 40 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 5 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( 30 20 20 ) +5 ( 70 -40 40 ) = ( 380 -180 220 ) , also im Punkt P(380|-180|220).

Das Bewegungsobjekt hat sich dann von A(30|20|20) nach P(380|-180|220) bewegt, also um den Vektor AP = ( 350 -200 200 ) . Dessen Länge ist 350 2 + (-200)2 + 200 2 = 202500 = 450 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( 70 -40 40 ) ( 0 0 1 ) | | ( 70 -40 40 ) | | ( 0 0 1 ) | = | 700 + (-40)0 + 401 | 70 2 + (-40)2 + 40 2 0 2 + 02 + 1 2
= | 40 | 8100 1 0.4444 => α=26.4°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 20 auf 900m (also 880m) zu steigen (bzw. fallen), muss es also 880 40 s = 22s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A (2|-2|654) in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 39,6km/h in Richtung des Punktes B (20|-29|648) (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Wann hat sie die (absolute) Höhe von 576m erreicht?
In welchem Punkt befindet die sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 39600 m 3600 s = 11 m s .
Die Länge des Vektors AB = ( 18 -27 -6 ) ist 18 2 + (-27)2 + (-6) 2 = 1089 = 33 (in m).
Bei einer Geschwindigkeit von 11 m s . braucht er für diese Strecke 33 11 s = 3s.
Punkt B wird als nach 3s erreicht.

In einer s wird also der Vektor 1 3 ( 18 -27 -6 ) = ( 6 -9 -2 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 2 -2 654 ) +t ( 6 -9 -2 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um -2m (Änderung in der x3-Koordinate). Um von 654 auf 576m (also -78m) zu steigen (bzw. fallen), muss es also -78 -2 s = 39s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 2 -2 654 ) +39 ( 6 -9 -2 ) = ( 236 -353 576 )
Also im Punkt P(236|-353|576).

Höhe nach x Kilometern

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (20|-50|30) (alle Angaben in Meter). Nach 2s ist es im Punkt B (-140|110|110) angelangt.
Welche (absolute) Höhe hat das Flugzeug, wenn es 9,6 km zurückgelegt hat?

Lösung einblenden

Das Bewegungsobjekt legt in 2 s den Vektor AB = ( -160 160 80 ) zurück.
In 1s legt es also den Vektor 1 2 ( -160 160 80 ) = ( -80 80 40 ) zurück.
Die Geradengleichung x = ( 20 -50 30 ) +t ( -80 80 40 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge = (-80) 2 + 802 + 40 2 = 14400 = 120.
Die Geschwindigkeit ist also v=120 m s
Für die Strecke von 9.6 km braucht es also 9600 120 s = 80s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 20 -50 30 ) +80 ( -80 80 40 ) = ( -6380 6350 3230 ) , also im Punkt P(-6380|6350|3230).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 3230 (in m).

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (2|2|0,8) . Nach 3s ist sie im Punkt B (5|-7|1,4) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -5 -22 1,3 ) +t ( 2 3 0,1 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 3s den Vektor AB = ( 3 -9 0.6 ) zurück.
In 1s legt es also den Vektor 1 3 ( 3 -9 0.6 ) = ( 1 -3 0.2 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 2 2 0.8 ) +t ( 1 -3 0.2 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,1t +1,3 = 0,2t +0,8 | -1,3 -0,2t
-0,1t = -0,5 |:(-0,1 )
t = 5

nach 5 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,15 +1,3 = 1.8 = 0,25 +0,8


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( -5 -22 1.3 ) +s ( 2 3 0.1 ) = ( 2 2 0.8 ) +t ( 1 -3 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-5+2s= 2+1t-22+3s= 2-3t

2s -1t = 7 (I) 3s +3t = 24 (II)
2s -1t = 7 (I) 3s +3t = 24 (II)

langsame Rechnung einblenden3·(I) -2·(II)

2s -1t = 7 (I) ( 6 -6 )s +( -3 -6 )t = ( 21 -48 ) (II)
2s -1t = 7 (I) -9t = -27 (II)
Zeile (II): -9t = -27

t = 3

eingesetzt in Zeile (I):

2s -1(3 ) = 7 | +3
2 s = 10 | : 2

s = 5

L={(5 |3 )}

Das heißt also, dass die Drohne F1 nach 5s und die Seilbahngondel F2 nach 3s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 5s bei ( -5 -22 1.3 ) +5 ( 2 3 0.1 ) = ( 5 -7 1.8 ) , während die Seilbahngondel F2 nach 5s bei ( 2 2 0.8 ) +5 ( 1 -3 0.2 ) = ( 7 -13 1.8 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(5|-7|1.8) und P2(7|-13|1.8):
P1P2 = ( 7-5 -13-( - 7 ) 1.8-1.8 ) = ( 2 -6 0 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 2 -6 0 ) | = 2 2 + (-6)2 + 0 2 = 40 ≈ 6.3245553203368

Der Abstand der beiden Objekte nach 5s ist also 39.9424 m ≈ 6.32 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( -5 -22 1.3 ) +s ( 2 3 0.1 ) = ( 2 2 0.8 ) +t ( 1 -3 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-5+2s= 2+1t-22+3s= 2-3t

2s -1t = 7 (I) 3s +3t = 24 (II)
2s -1t = 7 (I) 3s +3t = 24 (II)

langsame Rechnung einblenden3·(I) -2·(II)

2s -1t = 7 (I) ( 6 -6 )s +( -3 -6 )t = ( 21 -48 ) (II)
2s -1t = 7 (I) -9t = -27 (II)
Zeile (II): -9t = -27

t = 3

eingesetzt in Zeile (I):

2s -1(3 ) = 7 | +3
2 s = 10 | : 2

s = 5

L={(5 |3 )}

Das heißt also, dass die Drohne F1 nach 5s und die Seilbahngondel F2 nach 3s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 5s bei ( -5 -22 1.3 ) +5 ( 2 3 0.1 ) = ( 5 -7 1.8 ) , während die Seilbahngondel F2 nach 3s bei ( 2 2 0.8 ) +3 ( 1 -3 0.2 ) = ( 5 -7 1.4 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

1.8 - 1.4 = 0.4 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 5 5 0 ) +t ( -4 4 -3 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (15|3|14) . Nach 4min ist es im Punkt B (-5|19|2) angelangt.
Wie weit sind die beiden Flugzeuge nach 4min von einander entfernt?
Wie groß ist der kleinste Abstand der beiden Flugbahnen?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Flugzeug F2 legt in 4min den Vektor AB = ( -20 16 -12 ) zurück.
In 1min legt es also den Vektor 1 4 ( -20 16 -12 ) = ( -5 4 -3 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 15 3 14 ) +t ( -5 4 -3 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Das Flugzeug F1 ist nach 4min an der Stelle P1 ( 5 5 0 ) +4 ( -4 4 -3 ) = ( -11 21 -12 ) und das Flugzeug F2 an der Stelle P2 ( 15 3 14 ) +4 ( -5 4 -3 ) = ( -5 19 2 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-11|21|-12) und P2(-5|19|2):
P1P2 = ( -5-( - 11 ) 19-21 2-( - 12 ) ) = ( 6 -2 14 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 6 -2 14 ) | = 6 2 + (-2)2 + 14 2 = 236 ≈ 15.362291495737

Der Abstand ist also ca. 15.36 km.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( 15 3 14 ) +t ( -5 4 -3 ) enthält und parallel zur Geraden g: x = ( 5 5 0 ) +t ( -4 4 -3 ) ist, also x = ( 15 3 14 ) + r ( -5 4 -3 ) + s ( -4 4 -3 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( -4 4 -3 ) × ( -5 4 -3 ) = ( 4 · ( -3 ) - ( -3 ) · 4 -3 · ( -5 ) - ( -4 ) · ( -3 ) -4 · 4 - 4 · ( -5 ) ) = ( -12 +12 15 -12 -16 +20 ) = ( 0 3 4 )

Wenn wir den Aufpunkt von h Ah(15|3|14) in die allgemeine Ebenengleichung +3 x 2 +4 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

+3 x 2 +4 x 3 = 65

Nun können wir den Abstand zwischen der Geraden g: x = ( 5 5 0 ) +t ( -4 4 -3 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (5|5|0), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 0 5+3 5+4 0-65 | 0 2 + 3 2 + 4 2
= | -50 | 25 = 50 5 = 10

Alternativer (kürzerer) Lösungsweg mit Formel einblenden

Der Abstand der beiden Bewegungsbahnen beträgt somit 10 km


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 5 -4 t | 5 +4 t | 0 -3 t ) und G2 t ( 15 -5 t | 3 +4 t | 14 -3 t ) minimal wird.

d(t)= | ( 15-5t 3+4t 14-3t ) - ( 5-4t 5+4t 0-3t ) | = | ( 10-1t -2+0t 14+0t ) | soll also minimal werden.

d(t)= ( -t +10 ) 2 + ( 0 -2 ) 2 + ( 0 +14 ) 2
= t 2 -20t +100 +4 +196
= t 2 -20t +300

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 2x -20 +0

f''(t)= 2 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 10 als potentielle Extremstelle.

Wegen f''(t)= 2 +0+0 >0 ist also der Tiefpunkt bei t= 10 .

der minimale Abstand ist also d( 10 )= 10 2 -2010 +300 = 200 ≈ 14.1 (in km)

Höhe nach x Kilometern

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (20|-40|40) (alle Angaben in Meter). Nach 4s ist es im Punkt B (-60|40|80) angelangt.
Welche (absolute) Höhe hat das Flugzeug, wenn es 6,6 km zurückgelegt hat?

Lösung einblenden

Das Bewegungsobjekt legt in 4 s den Vektor AB = ( -80 80 40 ) zurück.
In 1s legt es also den Vektor 1 4 ( -80 80 40 ) = ( -20 20 10 ) zurück.
Die Geradengleichung x = ( 20 -40 40 ) +t ( -20 20 10 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge = (-20) 2 + 202 + 10 2 = 900 = 30.
Die Geschwindigkeit ist also v=30 m s
Für die Strecke von 6.6 km braucht es also 6600 30 s = 220s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 20 -40 40 ) +220 ( -20 20 10 ) = ( -4380 4360 2240 ) , also im Punkt P(-4380|4360|2240).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 2240 (in m).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -4 10 -2 ) +t ( 0 5 -15 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (3|4|30) . Nach 3min ist es im Punkt B (-3|22|-15) angelangt.
Wie weit sind die beiden Flugzeuge nach 1min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 3min den Vektor AB = ( -6 18 -45 ) zurück.
In 1min legt es also den Vektor 1 3 ( -6 18 -45 ) = ( -2 6 -15 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 3 4 30 ) +t ( -2 6 -15 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 1min an der Stelle P1 ( -4 10 -2 ) +1 ( 0 5 -15 ) = ( -4 15 -17 ) und F2 an der Stelle P2 ( 3 4 30 ) +1 ( -2 6 -15 ) = ( 1 10 15 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-4|15|-17) und P2(1|10|15):
P1P2 = ( 1-( - 4 ) 10-15 15-( - 17 ) ) = ( 5 -5 32 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 5 -5 32 ) | = 5 2 + (-5)2 + 32 2 = 1074 ≈ 32.771939216348

Der Abstand ist also ca. 32.77 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -4 +0 t | 10 +5 t | -2 -15 t ) und G2 t ( 3 -2 t | 4 +6 t | 30 -15 t ) minimal wird.

d(t)= | ( 3-2t 4+6t 30-15t ) - ( -4+0t 10+5t -2-15t ) | = | ( 7-2t -6+1t 32+0t ) | soll also minimal werden.

d(t)= ( -2t +7 ) 2 + ( t -6 ) 2 + ( 0 +32 ) 2
= 4 t 2 -28t +49 + t 2 -12t +36 +1024
= 5 t 2 -40t +1109

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -40 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 4 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 4 .

der minimale Abstand ist also d( 4 )= 5 4 2 -404 +1109 = 1029 ≈ 32.1

Nicht lineare Bewegung

Beispiel:

Ein Kugelstoßer stößt eine Kugel auf einer Kugelstoßanlage, die durch die x1x2-Ebene beschrieben wird. Die Bahn der Kugel kann mithilfe der Punkte Xt( 9t +4 | 12t +4 | - t 2 -1,6t +1,92 ) beschrieben werden; dabei ist t die seit dem Abstoß vergangene Zeit in Sekunden (Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität). Auf dieser Bahn fliegt die Kugel auf die Kugelstoßanlage in den vorgesehenen Sektor. Der Punkt A (4|4|0) liegt direkt auf dem Rand des Kugelstoßkreises.
Berechne die Weite, die für den Stoß gemessen wird.

Lösung einblenden

Zuerst berechnen den t-Wert, an dem die Kugel auf die x1x2-Ebene trifft, also wenn x3= 0 ist:

- t 2 -1,6t +1,92 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1,6 ± ( -1,6 ) 2 -4 · ( -1 ) · 1,92 2( -1 )

x1,2 = +1,6 ± 2,56 +7,68 -2

x1,2 = +1,6 ± 10,24 -2

x1 = 1,6 + 10,24 -2 = 1,6 +3,2 -2 = 4,8 -2 = -2,4

x2 = 1,6 - 10,24 -2 = 1,6 -3,2 -2 = -1,6 -2 = 0,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- t 2 -1,6t +1,92 = 0 |: -1

t 2 +1,6t -1,92 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1,6 2 ) 2 - ( -1,92 ) = 2.56 4 + 1,92 = 2.56 4 + 7.68 4 = 10.24 4

x1,2 = - 1,6 2 ± 2,56

x1 = - 1,6 2 - 1,6 ≈ -2.4

x2 = - 1,6 2 + 1,6 ≈ 0.8

Das heißt also, dass die Kugel nach 0,8 s in der x1x2-Ebene angekommen ist. Wenn wir t = 0,8 in den Punkt Xt einsetzen, erhalten wir L( 90,8 +4 | 120,8 +4 | - 0,8 2 -1,60,8 +1,92 ) = L(11.2|13.6|-0) als den Landepunkt.

Da ja die Kugel im Punkt X0(4|4|1.92), also direkt über A(4|4|0) losgeflogen ist, können wir die gesuchte Weite einfach als Länge des
Vektors AL = ( 11.2-4 13.6-4 0-0 ) = ( 7.2 9.6 0 ) berechnen:

d = 7.2 2 + 9.62 + 0 2 = 12