nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

nach x Minuten

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (10|40|10) (alle Angaben in Meter). Nach 1s ist es im Punkt B (30|20|20) angelangt. Wie hoch ist die Geschwindigkeit des Flugzeugs in km/h?
An welchem Ort befindet sich das Flugzeug nach 7s?
Wie weit ist das Flugzeug dann geflogen?
Berechne den Winkel mit dem das Flugzeug steigt?
Wann hat das Flugzeug die Höhe von 120m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 1s den Vektor AB = ( 20 -20 10 ) zurück. Dieser Vektor hat die Länge = 20 2 + (-20)2 + 10 2 = 900 = 30.
Die Geschwindigkeit ist also v=30 m s = 108 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( 10 40 10 ) +t ( 20 -20 10 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( 10 40 10 ) +7 ( 20 -20 10 ) = ( 150 -100 80 ) , also im Punkt P(150|-100|80).

Das Bewegungsobjekt hat sich dann von A(10|40|10) nach P(150|-100|80) bewegt, also um den Vektor AP = ( 140 -140 70 ) . Dessen Länge ist 140 2 + (-140)2 + 70 2 = 44100 = 210 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( 20 -20 10 ) ( 0 0 1 ) | | ( 20 -20 10 ) | | ( 0 0 1 ) | = | 200 + (-20)0 + 101 | 20 2 + (-20)2 + 10 2 0 2 + 02 + 1 2
= | 10 | 900 1 0.3333 => α=19.5°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 10 auf 120m (also 110m) zu steigen (bzw. fallen), muss es also 110 10 s = 11s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (-10|-20|10) und fliegt mit einer Geschwindigkeit von 432km/h in Richtung des Punktes B (150|140|90) (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Wann hat das Flugzeug die (absolute) Höhe von 730m erreicht?
In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 432000 m 3600 s = 120 m s .
Die Länge des Vektors AB = ( 160 160 80 ) ist 160 2 + 1602 + 80 2 = 57600 = 240 (in m).
Bei einer Geschwindigkeit von 120 m s . braucht er für diese Strecke 240 120 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( 160 160 80 ) = ( 80 80 40 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -10 -20 10 ) +t ( 80 80 40 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 10 auf 730m (also 720m) zu steigen (bzw. fallen), muss es also 720 40 s = 18s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -10 -20 10 ) +18 ( 80 80 40 ) = ( 1430 1420 730 )
Also im Punkt P(1430|1420|730).

Höhe nach x Kilometern

Beispiel:

Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (-3|9|0) (alle Angaben in Meter). Nach 3min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B (60|-27|-36) angelangt.
Wie tief ist das Uboot, wenn es 4,32 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)

Lösung einblenden

Das Bewegungsobjekt legt in 3 min den Vektor AB = ( 63 -36 -36 ) zurück.
In 1min legt es also den Vektor 1 3 ( 63 -36 -36 ) = ( 21 -12 -12 ) zurück.
Die Geradengleichung x = ( -3 9 0 ) +t ( 21 -12 -12 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = 21 2 + (-12)2 + (-12) 2 = 729 = 27.
Die Geschwindigkeit ist also v=27 m min
Für die Strecke von 4.32 km braucht es also 4320 27 min = 160min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( -3 9 0 ) +160 ( 21 -12 -12 ) = ( 3357 -1911 -1920 ) , also im Punkt P(3357|-1911|-1920).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -1920 (in m).

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-5|-8|0,5) . Nach 1s ist sie im Punkt B (-7|-6|1) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -7 -66 1,3 ) +t ( 0 10 0,4 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 1s den Vektor AB = ( -2 2 0.5 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -5 -8 0.5 ) +t ( -2 2 0.5 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,4t +1,3 = 0,5t +0,5 | -1,3 -0,5t
-0,1t = -0,8 |:(-0,1 )
t = 8

nach 8 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,48 +1,3 = 4.5 = 0,58 +0,5


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( -7 -66 1.3 ) +s ( 0 10 0.4 ) = ( -5 -8 0.5 ) +t ( -2 2 0.5 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-7+0s= -5-2t-66+10s= -8+2t

+2t = 2 (I) 10s -2t = 58 (II)
+2t = 2 (I) 10s -2t = 58 (II)

Wir tauschen die Zeilen 1 und 2, um auf die gewünschte Dreiecksform zu kommen.

10s -2t = 58 (I) +2t = 2 (II)
0 s +2 t = +2 (I) 10 s -2 t = +58 (II)
10s -2t = 58 (I) +2t = 2 (II)
Zeile (II): +2t = 2

t = 1

eingesetzt in Zeile (I):

10s -2·(1 ) = 58 | +2
10 s = 60 | : 10

s = 6

L={(6 |1 )}

Das heißt also, dass die Drohne F1 nach 6s und die Seilbahngondel F2 nach 1s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 6s bei ( -7 -66 1.3 ) +6 ( 0 10 0.4 ) = ( -7 -6 3.7 ) , während die Seilbahngondel F2 nach 6s bei ( -5 -8 0.5 ) +6 ( -2 2 0.5 ) = ( -17 4 3.5 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-7|-6|3.7) und P2(-17|4|3.5):
P1P2 = ( -17-( - 7 ) 4-( - 6 ) 3.5-3.7 ) = ( -10 10 -0.2 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -10 10 -0.2 ) | = (-10) 2 + 102 + (-0.2) 2 = 200.04 ≈ 14.14354976659

Der Abstand der beiden Objekte nach 6s ist also 199.9396 m ≈ 14.14 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( -7 -66 1.3 ) +s ( 0 10 0.4 ) = ( -5 -8 0.5 ) +t ( -2 2 0.5 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-7+0s= -5-2t-66+10s= -8+2t

+2t = 2 (I) 10s -2t = 58 (II)
+2t = 2 (I) 10s -2t = 58 (II)

Wir tauschen die Zeilen 1 und 2, um auf die gewünschte Dreiecksform zu kommen.

10s -2t = 58 (I) +2t = 2 (II)
0 s +2 t = +2 (I) 10 s -2 t = +58 (II)
10s -2t = 58 (I) +2t = 2 (II)
Zeile (II): +2t = 2

t = 1

eingesetzt in Zeile (I):

10s -2·(1 ) = 58 | +2
10 s = 60 | : 10

s = 6

L={(6 |1 )}

Das heißt also, dass die Drohne F1 nach 6s und die Seilbahngondel F2 nach 1s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 6s bei ( -7 -66 1.3 ) +6 ( 0 10 0.4 ) = ( -7 -6 3.7 ) , während die Seilbahngondel F2 nach 1s bei ( -5 -8 0.5 ) +1 ( -2 2 0.5 ) = ( -7 -6 1 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

3.7 - 1 = 2.7 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -1 5 -1 ) +t ( 7 7 -12 ) . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn).
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-19|-7|42) . Nach 4s ist sie im Punkt B (13|17|-6) angelangt.
Wie weit sind die Drohne und die Seilbahngondel nach 2s von einander entfernt?
Berechne den kleinsten Abstand, den die Drohne von der Seilbahn haben kann.
Zu welchem Zeitpunkt kommen sich die Drohne und die Gondel der Seilbahn am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Die Seilbahngondel legt in 4s den Vektor AB = ( 32 24 -48 ) zurück.
In 1s legt es also den Vektor 1 4 ( 32 24 -48 ) = ( 8 6 -12 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -19 -7 42 ) +t ( 8 6 -12 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Die Drohne ist nach 2s an der Stelle P1 ( -1 5 -1 ) +2 ( 7 7 -12 ) = ( 13 19 -25 ) und die Seilbahngondel an der Stelle P2 ( -19 -7 42 ) +2 ( 8 6 -12 ) = ( -3 5 18 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(13|19|-25) und P2(-3|5|18):
P1P2 = ( -3-13 5-19 18-( - 25 ) ) = ( -16 -14 43 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -16 -14 43 ) | = (-16) 2 + (-14)2 + 43 2 = 2301 ≈ 47.968739820846

Der Abstand ist also ca. 47.97 m.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( -19 -7 42 ) +t ( 8 6 -12 ) enthält und parallel zur Geraden g: x = ( -1 5 -1 ) +t ( 7 7 -12 ) ist, also x = ( -19 -7 42 ) + r ( 8 6 -12 ) + s ( 7 7 -12 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( 7 7 -12 ) × ( 8 6 -12 ) = ( 7 · ( -12 ) - ( -12 ) · 6 -12 · 8 - 7 · ( -12 ) 7 · 6 - 7 · 8 ) = ( -84 +72 -96 +84 42 -56 ) = ( -12 -12 -14 ) = -2⋅ ( 6 6 7 )

Wenn wir den Aufpunkt von h Ah(-19|-7|42) in die allgemeine Ebenengleichung 6 x 1 +6 x 2 +7 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

6 x 1 +6 x 2 +7 x 3 = 138

Nun können wir den Abstand zwischen der Geraden g: x = ( -1 5 -1 ) +t ( 7 7 -12 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (-1|5|-1), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 6 ( - 1 )+6 5+7 ( - 1 )-138 | 6 2 + 6 2 + 7 2
= | -121 | 121 = 121 11 = 11

Alternativer (kürzerer) Lösungsweg mit Formel einblenden

Der Abstand der beiden Bewegungsbahnen beträgt somit 11 m


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -1 +7 t | 5 +7 t | -1 -12 t ) und G2 t ( -19 +8 t | -7 +6 t | 42 -12 t ) minimal wird.

d(t)= | ( -19+8t -7+6t 42-12t ) - ( -1+7t 5+7t -1-12t ) | = | ( -18+1t -12-1t 43+0t ) | soll also minimal werden.

d(t)= ( t -18 ) 2 + ( -t -12 ) 2 + ( 0 +43 ) 2
= t 2 -36t +324 + t 2 +24t +144 +1849
= 2 t 2 -12t +2317

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 4x -12 +0

f''(t)= 4 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 3 als potentielle Extremstelle.

Wegen f''(t)= 4 +0+0 >0 ist also der Tiefpunkt bei t= 3 .

der minimale Abstand ist also d( 3 )= 2 3 2 -123 +2317 = 2299 ≈ 47.9 (in m)

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (50|50|50) und fliegt mit einer Geschwindigkeit von 396km/h in Richtung des Punktes B (410|290|130) (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Wann hat das Flugzeug die (absolute) Höhe von 690m erreicht?
In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 396000 m 3600 s = 110 m s .
Die Länge des Vektors AB = ( 360 240 80 ) ist 360 2 + 2402 + 80 2 = 193600 = 440 (in m).
Bei einer Geschwindigkeit von 110 m s . braucht er für diese Strecke 440 110 s = 4s.
Punkt B wird als nach 4s erreicht.

In einer s wird also der Vektor 1 4 ( 360 240 80 ) = ( 90 60 20 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 50 50 50 ) +t ( 90 60 20 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 50 auf 690m (also 640m) zu steigen (bzw. fallen), muss es also 640 20 s = 32s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 50 50 50 ) +32 ( 90 60 20 ) = ( 2930 1970 690 )
Also im Punkt P(2930|1970|690).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -2 6 0 ) +t ( 8 -11 -6 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (-4|18|14) . Nach 4min ist es im Punkt B (28|-30|-10) angelangt.
Wie weit sind die beiden Flugzeuge nach 1min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( 32 -48 -24 ) zurück.
In 1min legt es also den Vektor 1 4 ( 32 -48 -24 ) = ( 8 -12 -6 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -4 18 14 ) +t ( 8 -12 -6 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 1min an der Stelle P1 ( -2 6 0 ) +1 ( 8 -11 -6 ) = ( 6 -5 -6 ) und F2 an der Stelle P2 ( -4 18 14 ) +1 ( 8 -12 -6 ) = ( 4 6 8 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(6|-5|-6) und P2(4|6|8):
P1P2 = ( 4-6 6-( - 5 ) 8-( - 6 ) ) = ( -2 11 14 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -2 11 14 ) | = (-2) 2 + 112 + 14 2 = 321 ≈ 17.916472867169

Der Abstand ist also ca. 17.92 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -2 +8 t | 6 -11 t | 0 -6 t ) und G2 t ( -4 +8 t | 18 -12 t | 14 -6 t ) minimal wird.

d(t)= | ( -4+8t 18-12t 14-6t ) - ( -2+8t 6-11t 0-6t ) | = | ( -2+0t 12-1t 14+0t ) | soll also minimal werden.

d(t)= ( 0 -2 ) 2 + ( -t +12 ) 2 + ( 0 +14 ) 2
= 4 + t 2 -24t +144 +196
= t 2 -24t +344

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 2x -24 +0

f''(t)= 2 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 12 als potentielle Extremstelle.

Wegen f''(t)= 2 +0+0 >0 ist also der Tiefpunkt bei t= 12 .

der minimale Abstand ist also d( 12 )= 12 2 -2412 +344 = 200 ≈ 14.1

Nicht lineare Bewegung

Beispiel:

Ein Speerwerfer wirft einen Speer auf einer Fläche, die durch die x1x2-Ebene beschrieben wird. Die Flugbahn des Speers kann mithilfe der Punkte Xt( 10t +3 | 24t -1 | - t 2 -0,2t +2,24 ) beschrieben werden; dabei ist t die seit dem Abwurf vergangene Zeit in Sekunden (Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität). Auf dieser Flugbahn fliegt der Speer in den vorgesehenen Sektor. Der Punkt A (3|-1|0) liegt direkt auf dem Rand der Abwurflinie.
Berechne die Weite, die für den Speerwurf gemessen wird.

Lösung einblenden

Zuerst berechnen den t-Wert, an dem der Speer auf die x1x2-Ebene trifft, also wenn x3= 0 ist:

- t 2 -0,2t +2,24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +0,2 ± ( -0,2 ) 2 -4 · ( -1 ) · 2,24 2( -1 )

x1,2 = +0,2 ± 0,04 +8,96 -2

x1,2 = +0,2 ± 9 -2

x1 = 0,2 + 9 -2 = 0,2 +3 -2 = 3,2 -2 = -1,6

x2 = 0,2 - 9 -2 = 0,2 -3 -2 = -2,8 -2 = 1,4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- t 2 -0,2t +2,24 = 0 |: -1

t 2 +0,2t -2,24 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 0,2 2 ) 2 - ( -2,24 ) = 0.04 4 + 2,24 = 0.04 4 + 8.96 4 = 9 4

x1,2 = - 0,2 2 ± 2,25

x1 = - 0,2 2 - 1,5 ≈ -1.6

x2 = - 0,2 2 + 1,5 ≈ 1.4

Das heißt also, dass der Speer nach 1,4 s in der x1x2-Ebene angekommen ist. Wenn wir t = 1,4 in den Punkt Xt einsetzen, erhalten wir L( 101,4 +3 | 241,4 -1 | - 1,4 2 -0,21,4 +2,24 ) = L(17|32.6|0) als den Landepunkt.

Da ja der Speer im Punkt X0(3|-1|2.24), also direkt über A(3|-1|0) losgeflogen ist, können wir die gesuchte Weite einfach als Länge des
Vektors AL = ( 17-3 32.6-( - 1 ) 0-0 ) = ( 14 33.6 0 ) berechnen:

d = 14 2 + 33.62 + 0 2 = 36,4