nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

nach x Minuten

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (40|-40|50) (alle Angaben in Meter). Nach 1s ist es im Punkt B (-40|40|90) angelangt. Wie hoch ist die Geschwindigkeit des Flugzeugs in km/h?
An welchem Ort befindet sich das Flugzeug nach 12s?
Wie weit ist das Flugzeug dann geflogen?
Berechne den Winkel mit dem das Flugzeug steigt?
Wann hat das Flugzeug die Höhe von 450m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 1s den Vektor AB = ( -80 80 40 ) zurück. Dieser Vektor hat die Länge = (-80) 2 + 802 + 40 2 = 14400 = 120.
Die Geschwindigkeit ist also v=120 m s = 432 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( 40 -40 50 ) +t ( -80 80 40 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 12 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( 40 -40 50 ) +12 ( -80 80 40 ) = ( -920 920 530 ) , also im Punkt P(-920|920|530).

Das Bewegungsobjekt hat sich dann von A(40|-40|50) nach P(-920|920|530) bewegt, also um den Vektor AP = ( -960 960 480 ) . Dessen Länge ist (-960) 2 + 9602 + 480 2 = 2073600 = 1440 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( -80 80 40 ) ( 0 0 1 ) | | ( -80 80 40 ) | | ( 0 0 1 ) | = | (-80)0 + 800 + 401 | (-80) 2 + 802 + 40 2 0 2 + 02 + 1 2
= | 40 | 14400 1 0.3333 => α=19.5°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 50 auf 450m (also 400m) zu steigen (bzw. fallen), muss es also 400 40 s = 10s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A (3|1|654) in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 32,4km/h in Richtung des Punktes B (-5|5|653) (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Wann hat sie die (absolute) Höhe von 646m erreicht?
In welchem Punkt befindet die sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 32400 m 3600 s = 9 m s .
Die Länge des Vektors AB = ( -8 4 -1 ) ist (-8) 2 + 42 + (-1) 2 = 81 = 9 (in m).
Bei einer Geschwindigkeit von 9 m s . braucht er für diese Strecke 9 9 s = 1s.
Punkt B wird als nach 1s erreicht.

In einer s wird also der Vektor ( -8 4 -1 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 3 1 654 ) +t ( -8 4 -1 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um -1m (Änderung in der x3-Koordinate). Um von 654 auf 646m (also -8m) zu steigen (bzw. fallen), muss es also -8 -1 s = 8s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 3 1 654 ) +8 ( -8 4 -1 ) = ( -61 33 646 )
Also im Punkt P(-61|33|646).

Höhe nach x Kilometern

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (10|10|0) (alle Angaben in Meter). Nach 2s ist es im Punkt B (-30|50|20) angelangt.
Welche (absolute) Höhe hat das Flugzeug, wenn es 4,2 km zurückgelegt hat?

Lösung einblenden

Das Bewegungsobjekt legt in 2 s den Vektor AB = ( -40 40 20 ) zurück.
In 1s legt es also den Vektor 1 2 ( -40 40 20 ) = ( -20 20 10 ) zurück.
Die Geradengleichung x = ( 10 10 0 ) +t ( -20 20 10 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge = (-20) 2 + 202 + 10 2 = 900 = 30.
Die Geschwindigkeit ist also v=30 m s
Für die Strecke von 4.2 km braucht es also 4200 30 s = 140s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 10 10 0 ) +140 ( -20 20 10 ) = ( -2790 2810 1400 ) , also im Punkt P(-2790|2810|1400).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1400 (in m).

Zwei Objekte - gleiche Höhe

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 75 -63 0 ) +t ( -8 9 0,4 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (9|-7|1) . Nach 5min ist es im Punkt B (14|33|2) angelangt.
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Wie weit sind die beiden Flugzeuge von einander entfernt, wenn F1 genau senkrecht über oder unter der Flugbahn von F2 ist?
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?

Lösung einblenden

Das Flugzeug F2 legt in 5min den Vektor AB = ( 5 40 1 ) zurück.
In 1min legt es also den Vektor 1 5 ( 5 40 1 ) = ( 1 8 0.2 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 9 -7 1 ) +t ( 1 8 0.2 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,4t +0 = 0,2t +1
0,4t = 0,2t +1 | -0,2t
0,2t = 1 |:0,2
t = 5

nach 5 min sind also das Flugzeug F1 und das Flugzeug F2 auf gleicher Höhe: 0,45 +0 = 2 = 0,25 +1


Das Flugzeug F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich das Flugzeug F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( 75 -63 0 ) +s ( -8 9 0.4 ) = ( 9 -7 1 ) +t ( 1 8 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

75-8s= 9+1t-63+9s= -7+8t

-8s -1t = -66 (I) 9s -8t = 56 (II)
-8s -1t = -66 (I) 9s -8t = 56 (II)

langsame Rechnung einblenden9·(I) + 8·(II)

-8s -1t = -66 (I) ( -72 +72 )s +( -9 -64 )t = ( -594 +448 ) (II)
-8s -1t = -66 (I) -73t = -146 (II)
Zeile (II): -73t = -146

t = 2

eingesetzt in Zeile (I):

-8s -1(2 ) = -66 | +2
-8 s = -64 | : (-8)

s = 8

L={(8 |2 )}

Das heißt also, dass das Flugzeug F1 nach 8min und das Flugzeug F2 nach 2min an diesem 'x1-x2-Schnittpunkt' ist.

das Flugzeug F1 ist also nach 8min bei ( 75 -63 0 ) +8 ( -8 9 0.4 ) = ( 11 9 3.2 ) , während das Flugzeug F2 nach 8min bei ( 9 -7 1 ) +8 ( 1 8 0.2 ) = ( 17 57 2.6 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(11|9|3.2) und P2(17|57|2.6):
P1P2 = ( 17-11 57-9 2.6-3.2 ) = ( 6 48 -0.6 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 6 48 -0.6 ) | = 6 2 + 482 + (-0.6) 2 = 2340.36 ≈ 48.377267388723

Der Abstand der beiden Objekte nach 8min ist also 2340.6244 km ≈ 48.38 km


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( 75 -63 0 ) +s ( -8 9 0.4 ) = ( 9 -7 1 ) +t ( 1 8 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

75-8s= 9+1t-63+9s= -7+8t

-8s -1t = -66 (I) 9s -8t = 56 (II)
-8s -1t = -66 (I) 9s -8t = 56 (II)

langsame Rechnung einblenden9·(I) + 8·(II)

-8s -1t = -66 (I) ( -72 +72 )s +( -9 -64 )t = ( -594 +448 ) (II)
-8s -1t = -66 (I) -73t = -146 (II)
Zeile (II): -73t = -146

t = 2

eingesetzt in Zeile (I):

-8s -1(2 ) = -66 | +2
-8 s = -64 | : (-8)

s = 8

L={(8 |2 )}

Das heißt also, dass das Flugzeug F1 nach 8min und das Flugzeug F2 nach 2min an diesem 'x1-x2-Schnittpunkt' ist.

das Flugzeug F1 ist also nach 8min bei ( 75 -63 0 ) +8 ( -8 9 0.4 ) = ( 11 9 3.2 ) , während das Flugzeug F2 nach 2min bei ( 9 -7 1 ) +2 ( 1 8 0.2 ) = ( 11 9 1.4 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

3.2 - 1.4 = 1.8 km

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 0 -1 -2 ) +t ( 0 5 -5 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (7|-7|14) . Nach 4min ist es im Punkt B (-1|17|-6) angelangt.
Wie weit sind die beiden Flugzeuge nach 5min von einander entfernt?
Wie groß ist der kleinste Abstand der beiden Flugbahnen?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Flugzeug F2 legt in 4min den Vektor AB = ( -8 24 -20 ) zurück.
In 1min legt es also den Vektor 1 4 ( -8 24 -20 ) = ( -2 6 -5 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 7 -7 14 ) +t ( -2 6 -5 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Das Flugzeug F1 ist nach 5min an der Stelle P1 ( 0 -1 -2 ) +5 ( 0 5 -5 ) = ( 0 24 -27 ) und das Flugzeug F2 an der Stelle P2 ( 7 -7 14 ) +5 ( -2 6 -5 ) = ( -3 23 -11 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(0|24|-27) und P2(-3|23|-11):
P1P2 = ( -3-0 23-24 -11-( - 27 ) ) = ( -3 -1 16 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -3 -1 16 ) | = (-3) 2 + (-1)2 + 16 2 = 266 ≈ 16.3095064303

Der Abstand ist also ca. 16.31 km.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( 7 -7 14 ) +t ( -2 6 -5 ) enthält und parallel zur Geraden g: x = ( 0 -1 -2 ) +t ( 0 5 -5 ) ist, also x = ( 7 -7 14 ) + r ( -2 6 -5 ) + s ( 0 5 -5 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( 0 5 -5 ) × ( -2 6 -5 ) = ( 5 · ( -5 ) - ( -5 ) · 6 -5 · ( -2 ) - 0 · ( -5 ) 0 · 6 - 5 · ( -2 ) ) = ( -25 +30 10 +0 0 +10 ) = ( 5 10 10 ) = 5⋅ ( 1 2 2 )

Wenn wir den Aufpunkt von h Ah(7|-7|14) in die allgemeine Ebenengleichung x 1 +2 x 2 +2 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

x 1 +2 x 2 +2 x 3 = 21

Nun können wir den Abstand zwischen der Geraden g: x = ( 0 -1 -2 ) +t ( 0 5 -5 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (0|-1|-2), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 1 0+2 ( - 1 )+2 ( - 2 )-21 | 1 2 + 2 2 + 2 2
= | -27 | 9 = 27 3 = 9

Alternativer (kürzerer) Lösungsweg mit Formel einblenden

Der Abstand der beiden Bewegungsbahnen beträgt somit 9 km


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 0 +0 t | -1 +5 t | -2 -5 t ) und G2 t ( 7 -2 t | -7 +6 t | 14 -5 t ) minimal wird.

d(t)= | ( 7-2t -7+6t 14-5t ) - ( 0+0t -1+5t -2-5t ) | = | ( 7-2t -6+1t 16+0t ) | soll also minimal werden.

d(t)= ( -2t +7 ) 2 + ( t -6 ) 2 + ( 0 +16 ) 2
= 4 t 2 -28t +49 + t 2 -12t +36 +256
= 5 t 2 -40t +341

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -40 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 4 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 4 .

der minimale Abstand ist also d( 4 )= 5 4 2 -404 +341 = 261 ≈ 16.2 (in km)

nach x Minuten

Beispiel:

Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (-200|-200|150) (alle Angaben in Meter). Nach 1s ist es im Punkt B (150|-500|450) angelangt.
Wie hoch ist die Geschwindigkeit der Rakete in km/h?
Wo ist die Rakete nach 2s?
Wie weit ist die Rakete dann geflogen?
Berechne den Winkel mit dem die Rakete steigt?
Wann hat die Rakete die Höhe von 3150m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 1s den Vektor AB = ( 350 -300 300 ) zurück. Dieser Vektor hat die Länge = 350 2 + (-300)2 + 300 2 = 302500 = 550.
Die Geschwindigkeit ist also v=550 m s = 1980 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( -200 -200 150 ) +t ( 350 -300 300 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 2 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( -200 -200 150 ) +2 ( 350 -300 300 ) = ( 500 -800 750 ) , also im Punkt P(500|-800|750).

Das Bewegungsobjekt hat sich dann von A(-200|-200|150) nach P(500|-800|750) bewegt, also um den Vektor AP = ( 700 -600 600 ) . Dessen Länge ist 700 2 + (-600)2 + 600 2 = 1210000 = 1100 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( 350 -300 300 ) ( 0 0 1 ) | | ( 350 -300 300 ) | | ( 0 0 1 ) | = | 3500 + (-300)0 + 3001 | 350 2 + (-300)2 + 300 2 0 2 + 02 + 1 2
= | 300 | 302500 1 0.5455 => α=33.1°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 300m (Änderung in der x3-Koordinate). Um von 150 auf 3150m (also 3000m) zu steigen (bzw. fallen), muss es also 3000 300 s = 10s lang steigen (bzw. sinken).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 3 10 -1 ) +t ( 0 5 -5 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (9|12|12) . Nach 4min ist es im Punkt B (1|36|-8) angelangt.
Wie weit sind die beiden Flugzeuge nach 1min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( -8 24 -20 ) zurück.
In 1min legt es also den Vektor 1 4 ( -8 24 -20 ) = ( -2 6 -5 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 9 12 12 ) +t ( -2 6 -5 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 1min an der Stelle P1 ( 3 10 -1 ) +1 ( 0 5 -5 ) = ( 3 15 -6 ) und F2 an der Stelle P2 ( 9 12 12 ) +1 ( -2 6 -5 ) = ( 7 18 7 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(3|15|-6) und P2(7|18|7):
P1P2 = ( 7-3 18-15 7-( - 6 ) ) = ( 4 3 13 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 4 3 13 ) | = 4 2 + 32 + 13 2 = 194 ≈ 13.928388277184

Der Abstand ist also ca. 13.93 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 3 +0 t | 10 +5 t | -1 -5 t ) und G2 t ( 9 -2 t | 12 +6 t | 12 -5 t ) minimal wird.

d(t)= | ( 9-2t 12+6t 12-5t ) - ( 3+0t 10+5t -1-5t ) | = | ( 6-2t 2+1t 13+0t ) | soll also minimal werden.

d(t)= ( -2t +6 ) 2 + ( t +2 ) 2 + ( 0 +13 ) 2
= 4 t 2 -24t +36 + t 2 +4t +4 +169
= 5 t 2 -20t +209

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -20 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 2 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 2 .

der minimale Abstand ist also d( 2 )= 5 2 2 -202 +209 = 189 ≈ 13.7

Nicht lineare Bewegung

Beispiel:

Ein Fußballtorwart führt eine Abschlag auf einem Fußballplatz durch, der durch die x1x2-Ebene beschrieben wird. Die Bahn des Fußballs kann mithilfe der Punkte Xt( 10t +2 | 24t +3 | - t 2 +1,1t ) beschrieben werden; dabei ist t die seit dem Abschlag vergangene Zeit in Sekunden (Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität). Auf dieser Bahn fliegt der Ball auf den Fußballplatz.
Berechne die Weite des Abschlags, also die Entfernung zwischen dem Punkt des Abstoßes und dem Punkt, bei dem der Ball das erste mal wieder auf dem Boden landet.

Lösung einblenden

Zuerst berechnen den t-Wert, an dem der Fußball auf die x1x2-Ebene trifft, also wenn x3= 0 ist:

- x 2 +1,1x = 0
x ( -x +1,1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +1,1 = 0 | -1,1
-x = -1,1 |:(-1 )
x2 = 1,1

Das heißt also, dass der Fußball nach 1,1 s in der x1x2-Ebene angekommen ist. Wenn wir t = 1,1 in den Punkt Xt einsetzen, erhalten wir L( 101,1 +2 | 241,1 +3 | - 1,1 2 +1,11,1 ) = L(13|29.4|0) als den Landepunkt.

Da ja der Fußball im Punkt A(2|3|0) losgeflogen ist, können wir die gesuchte Weite einfach als Länge des
Vektors AL = ( 13-2 29.4-3 0-0 ) = ( 11 26.4 0 ) berechnen:

d = 11 2 + 26.42 + 0 2 = 28,6