- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrieeigenschaften (elementar)
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Da f nur ungerade Hochzahlen hat, ist ihr Schaubild punktsymmetrisch zum Ursprung.
Symmetrie bestimmen (allg.)
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = =
Wenn man das mit f(x) = vergleicht, kann man erkennen, dass die beiden Funktionsterme gleich sind.
Es gilt also: f(-x) = f(x)
Somit liegt bei f Achsensymmetrie bezüglich der y-Achse vor.
Verhalten gegen ∞
Beispiel:
Bestimme das Verhalten der Funktion f mit f(x) = für x → -∞ und für x → ∞.
Weil für (betragsmäßig) sehr große x-Werte der erste Potenzterm mit dem höchsten Exponent immer (betragsmäßig) größere Funktionswerte als die anderen Potenzterme hat, genügt es nur dessen Verhalten für x → ± ∞ zu untersuchen.
x → - ∞
Da der Exponent bei ungerade ist, hat ein negatives Vorzeichen, wenn man was negatives für x einsetzt. Multipliziert mit erhalten wir so also ein negatives Vorzeichen:
Somit: x → - ∞ ⇒ →
Also gilt auch: x → - ∞ ⇒ →
x → + ∞
hat natürlich immer ein positives Vorzeichen, wenn man was positives für x einsetzt. Multipliziert mit erhalten wir so also ein positives Vorzeichen:
Somit: x → + ∞ ⇒ →
Also gilt auch: x → + ∞ ⇒ →
Term mit Grenzverhalten bestimmen
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- der Grad von f muss mindestens 2 sein
- Verhalten für x → -∞: f(x) → ∞
- Verhalten für x → ∞: f(x) → -∞
- f(1) = 1
Da das Verhalten für x → -∞ und für x → +∞ verschieden ist, muss der Grad einer solchen Funktion ungerade, weil es ja nur bei ungeraden Hochzahlen einen Unterschied macht, ob man postive oder negative Werte für x in eine Potenz einsetzt. Und weil der Grad ja mindestens 2 sind muss nehmen wir am besten 3 als Grad.
Für f(x) =
f(1) =
= -1 ist aber leider nicht 1. Da ja aber das Grenzverhalten nur von der Potenz mit der höchsten
Hochzahl abhängt, können wir einfach noch das fehlende 1 -
Ein möglicher Funktionsterm wäre somit:
Dieser funktionierende Term ist im roten Graphen eingezeichnet