Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Ein Konto wird mit 5000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 35 Jahren hat sich der der Kontostand verdoppelt. Bestimme den Funktionsterm der Exponentialfunktion, die den Kontostand nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 35 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
c und ein Funktionswert gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart exponentiell abnimmt. Zu Beginn der Beobachtung wurden 11 Millionen dieser Insekten geschätzt. 12 Jahre nach Beobachtungsbeginn werden noch 4,6 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 4 Jahren? b) Wann erwartet man nur noch 6,2 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=11 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 12 Jahre der Bestand 4.6 Millionen Insekten ist,
also f(12) = 4.6. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=4 Jahre, also f(4):
f(4) =
zu b)
Hier wird gefragt, wann der Bestand = 6.2 Millionen Insekten ist, also f(t) = 6.2:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 7,901 Jahre ist also der Bestand = 6.2 Millionen Insekten.
