Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
25 =
Es gilt somit: 5 <
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann
niemals = 0 werden.k e k x + k - Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentiantermk x + k recht schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote beik e k x + k erkennen.2
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.k x + k
Wenn wir nunk x + k = 0 | - ( )k k x = - k |:( )k x = - 1 in fk einsetzen erhalten wir folgende Gleichung:- 1
fk( ) =- 1 =k e k ⋅ ( - 1 ) + k + 2 k + 2
im abgebildeten Term können wir aber ja f( ) = 0 ablesen, es gilt somit:- 1 k + 2 = 0 | - 2 k = - 2
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 60% = 40 %
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 5000 Nutzer. Nach 5 Wochen zählt man bereits 10501,71 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 9 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 14000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=5000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 5 Wochen der Bestand 10501.71 Nutzer ist,
also f(5) = 10501.71. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
|
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=9 Wochen, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 14000 Nutzer ist, also f(t) = 14000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 6,937 Wochen ist also die Anzahl der Nutzer = 14000 Nutzer.
