Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
Wenn wir jetzt die
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
niemals = 0 werden kann.e 6 10 x - k
Da jedoch der zweite Summand abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.2 k
Denn für x → -∞ strebt fk(x) → 0 +2 k
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = 2, somit muss = 2 gelten;2 k
Also gilt k =1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Staat verliert jedes Jahr 2% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?
Die prozentuale Abnahme um 2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.98(
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 6% verzinst. 6 Jahre nach dem das Konto eröffnet wurde, sind bereits 5674,08€ auf dem Konto. a) Wie hoch ist der Kontostand 4 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 6000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 6% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 6% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 5674.08 € ist,
also f(6) = 5674.08. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.066 = 5674.08
c ⋅ 1.41852 = 5674.08 | : 1.41852
c = 4000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=4 Jahre, also f(4):
f(4) =
zu b)
Hier wird gefragt, wann der Kontostand = 6000 € ist, also f(t) = 6000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 6,959 Jahre ist also der Kontostand = 6000 €.
