nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache log 3 ( 9x ) - log 3 ( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
log 3 ( 9x ) - log 3 ( x )
= log 3 ( 9 ) + log 3 ( x ) - log 3 ( x )
= log 3 ( 3 2 ) + log 3 ( x ) - log 3 ( x )
= 2 + log 3 ( x ) - log 3 ( x )
= 2

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| 1 2 ), also gilt f(0)= 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = 1 2 , also f(x)= 1 2 a x .

Außerdem können wir den Punkt (1|2) auf dem Graphen ablesen, also git f(1) = 2.

In unseren Funktionsterm f(x)= 1 2 a x eingesezt bedeutet das: 2 = 1 2 a = 1 2 a .

Es gilt also: 2 = 1 2 a | ⋅ 2

4 = a

Somit ist der Funtionsterm: f(x)= 1 2 4 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -3 e -0,2x +0,2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,2x +0,2 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,2x +0,2 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -3 vor e -0,2x +0,2 wird e -0,2x +0,2 an der x-Achse gespiegelt. Dadurch liegen bei -3 e -0,2x +0,2 die Funktionswerte zwischen -∞ und 0.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-3 e -0,2x +0,2 = y |:-3
e -0,2x +0,2 = - 1 3 y |ln(⋅)
-0,2x +0,2 = ln( - 1 3 y )
-0,2x +0,2 = ln( - 1 3 y ) | -0,2
-0,2x = ln( - 1 3 y ) -0,2 |:(-0,2 )
x = - 1 0,2 ln( - 1 3 y ) + 0,2 0,2

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 1 0,2 ln( - 1 3 x ) + 0,2 0,2

und erhalten so die Umkehrfunktion f - (x) = - 1 0,2 ln( - 1 3 x ) + 0,2 0,2

Exponentialterm mit Halbwertszeit best.

Beispiel:

Bei einem Staat mit 60 Millionen Einwohner geht man davon aus, dass die Einwohnerzahl exponentiell abnimmt. Nach 69 Jahren hat sich die Bevölkerung halbiert?Bestimme den Funktionsterm der Exponentialfunktion, die die Einwohnerzahl in Millionen Einwohner nach t Jahren angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 60 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga( 1 2 ).

Also 69 = loga( 1 2 ). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 69 = 1 2 | 69
a = 1 2 69

Das gesuchte a ist somit 1 2 69 ≈ 0.99, der gesuchte Funktionsterm f(t)= 60 0,99 t

a und ein Funktionswert gegeben

Beispiel:

Ein Staat verliert jedes Jahr 2,9% seiner Bevölkerung. Nach 10 Jahren hat der Staat noch 44,7 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 13 Jahren? b) Wann hat das Land nur noch 40 Millionen Einwohner?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Abnahme um 2.9% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.9% weggehen,
also Bneu = B - 2.9 100 ⋅B = (1 - 2.9 100 ) ⋅ B = 0,971 ⋅ B. Somit ist das a=0,971.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 0,971 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Jahre der Bestand 44.7 Millionen Einwohner ist, also f(10) = 44.7. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 0,971 t ein:

c ⋅ 0.97110 = 44.7

c ⋅ 0.74506 = 44.7 | : 0.74506

c = 60

Damit ergibt sich der Funktionsterm f(t)= 60 0,971 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=13 Jahre, also f(13):

f(13) = 60 0,971 13 40,926.

zu b)

Hier wird gefragt, wann der Bestand = 40 Millionen Einwohner ist, also f(t) = 40:

60 0,971 t = 40 |:60
0,971 t = 2 3 |lg(⋅)
lg( 0,971 t ) = lg( 2 3 )
t · lg( 0,971 ) = lg( 2 3 ) |: lg( 0,971 )
t = lg( 2 3 ) lg( 0,971 )
t = 13,7778

Nach ca. 13,778 Jahre ist also der Bestand = 40 Millionen Einwohner.