Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = = =
Wenn man das mit f(x) = vergleicht, kann man erkennen, dass f(-x) = gerade das Negative von f(x), also -f(x) = ist.
Es gilt also: f(-x) = -f(x)
Somit liegt bei f Punktsymmetrie bezüglich des Ursprungs vor.
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn
= 0 ist, also für x = .
Dann muss ja der y-Wert fk() = = = sein.
Da bei x = bei ( ) auch das Vorzeichen wechselt, muss dieser Punkt P(| ) im abgebildeten Graph bei P(1| ) sein.
Für den x-Wert dieses Punkts P gilt somit = 1
Also gilt k =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Ein Konto wird mit 3000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 23,4 Jahren hat sich der der Kontostand verdoppelt. Bestimme den Funktionsterm der Exponentialfunktion, die den Kontostand nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 3000 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 23.4 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 17%. Zu Beobachtungsbeginn umfasste die Kultur 15 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 12 Stunden? b) Wann umfasst die Kultur 85 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=15 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=12 Stunden, also f(12):
f(12) =
zu b)
Hier wird gefragt, wann der Bestand = 85 Millionen Bakterien ist, also f(t) = 85:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 11,048 Stunden ist also der Bestand = 85 Millionen Bakterien.
