Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann
niemals = 0 werden.3 k e k x + 2 k - Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentiantermk x + 2 k recht schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote bei3 k e k x + 2 k erkennen.2
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.k x + 2 k
Wenn wir nunk x + 2 k = 0 | - ( )2 k k x = - 2 k |:( )k x = - 2 in fk einsetzen erhalten wir folgende Gleichung:- 2
fk( ) =- 2 =3 k e k ⋅ ( - 2 ) + 2 k + 2 3 k + 2
im abgebildeten Term können wir aber ja f( ) = 1 ablesen, es gilt somit:- 2 3 k + 2 = 1 | - 2 3 k = - 1 |: 3 k = - 1 3
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 95% = 5 %
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 2000 Nutzer. Nach 12 Wochen zählt man bereits 6276,86 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 9 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 3000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=2000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 12 Wochen der Bestand 6276.86 Nutzer ist,
also f(12) = 6276.86. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
=
|
| a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=9 Wochen, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 3000 Nutzer ist, also f(t) = 3000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 4,254 Wochen ist also die Anzahl der Nutzer = 3000 Nutzer.
