Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
51 =
Es gilt somit: 1 <
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann
niemals = 0 werden.k e k x - k - Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentiantermk x - k recht schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote beik e k x - k erkennen.- 2
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.k x - k
Wenn wir nunk x - k = 0 | - ( )- k k x = k |:( )k x = 1 in fk einsetzen erhalten wir folgende Gleichung:1
fk( ) =1 =k e k ⋅ 1 - k - 2 k - 2
im abgebildeten Term können wir aber ja f( ) = -1 ablesen, es gilt somit:1 k - 2 = - 1 | + 2 k = 1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.912(
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 35%. 13 Stunden nach Beobachtungsbeginn sind es bereits 1088,33Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 10 Stunden? b) Wann umfasst die Kultur 222 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 35% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 35% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 13 Stunden der Bestand 1088.33 Millionen Bakterien ist,
also f(13) = 1088.33. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.3513 = 1088.33
c ⋅ 49.46967 = 1088.33 | : 49.46967
c = 22
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Stunden, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Bestand = 222 Millionen Bakterien ist, also f(t) = 222:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 7,703 Stunden ist also der Bestand = 222 Millionen Bakterien.
