Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = =
Wenn man das mit f(x) = vergleicht, kann man erkennen, dass f(-x) = gerade das Negative von f(x), also -f(x) = ist.
Es gilt also: f(-x) = -f(x)
Somit liegt bei f Punktsymmetrie bezüglich des Ursprungs vor.
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|3) gut erkennen. Es gilt folglich.
fk() = = = 3= |: = = 0.5
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Bei einer Bakterienkultur geht davon aus, dass sie sich innerhalb von 9 Stunden verdoppelt. Zu Beobachtungsbeginn umfasste die Kultur 15 Milionen Bakterien. Bestimme den Funktionsterm der Exponentialfunktion, die die Bakterienanzahl in Milionen nach t Stunden angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 15 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 9 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 13% seines Bestands. 10 Tage nach Beobachtungsbeginn sind nur noch 2,48kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 9 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 2,9kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 13% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 13% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Tage der Bestand 2.48 kg ist,
also f(10) = 2.48. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.8710 = 2.48
c ⋅ 0.24842 = 2.48 | : 0.24842
c = 10
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=9 Tage, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann der Bestand = 2.9 kg ist, also f(t) = 2.9:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 8,889 Tage ist also der Bestand = 2.9 kg.
