Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 10% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 10% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 10% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,9 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=0,9.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.9() ≈ 6.58 Jahre
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 5%. 9 Stunden nach Beobachtungsbeginn sind es bereits 6,21Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 8 Stunden? b) Wann umfasst die Kultur 6,2 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 5% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 5% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,05 ⋅ B. Somit ist das a=1,05.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 9 Stunden der Bestand 6.21 Millionen Bakterien ist, also f(9) = 6.21. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.059 = 6.21
c ⋅ 1.55133 = 6.21 | : 1.55133
c = 4
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Stunden, also f(8):
f(8) = ≈ 5,91.
zu b)
Hier wird gefragt, wann der Bestand = 6.2 Millionen Bakterien ist, also f(t) = 6.2:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 8,982 Stunden ist also der Bestand = 6.2 Millionen Bakterien.
