Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Da wir nicht den Logarithmus zur Basis 4 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn( x - 3 k ) · e x - 3 2 k = 0 ist, also für x =x - 3 k .3 k
Dann muss ja der y-Wert fk( ) =3 k =( ( 3 k ) - 3 k ) · e ( 3 k ) - 3 2 k - 3 =0 - 3 sein.- 3
Da bei x = bei (3 k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x - 3 k |3 k ) im abgebildeten Graph bei P(2|- 3 ) sein.- 3
Für den x-Wert dieses Punkts P gilt somit = 23 k
Also gilt k =2 3
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.043(
c und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 4000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 10 Jahren beträgt der Kontostand bereits 6515,58€. a) Wie hoch ist der Kontostand 11 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 7000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=4000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 10 Jahre der Bestand 6515.58 € ist,
also f(10) = 6515.58. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
=
|
| a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=11 Jahre, also f(11):
f(11) =
zu b)
Hier wird gefragt, wann der Kontostand = 7000 € ist, also f(t) = 7000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 11,47 Jahre ist also der Kontostand = 7000 €.
