Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Tipp: Skizziere zuerst den Graph von f auf einem Stück Papier.
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei das x von durch ein -x ersetzt wurde, wird der Graph von gegenüber dem der natürlichen Exponentialfunktion an der y-Achse gespiegelt.
Da bei zu jedem Funktionswert von noch 3 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 3 nach oben verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben also >0, der Graph verläuft somit komplett über der x-Achse.
- Die Funktionswerte werden also immer kleiner, die Funktion ist also streng monoton fallend.
- Für x → ∞ strebt gegen = .
- Für x → - ∞ strebt gegen .
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|5) gut erkennen. Es gilt folglich.
fk() = = = 5=
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 15% vermehrt. Wie lange braucht es, bis sich die Nutzerzahl verdoppelt hat?
Die prozentuale Zunahme um 15% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 15% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,15 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=1,15.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.15() ≈ 4.96 Wochen
c und a gegeben
Beispiel:
Ein Konto wird mit 7% verzinst. Zu Beginn sind 1000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 13 Jahren? b) Wann ist der Kontostand auf 1500€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=1000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 7% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 7% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,07 ⋅ B. Somit ist das a=1,07.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=13 Jahre, also f(13):
f(13) = ≈ 2409,845.
zu b)
Hier wird gefragt, wann der Kontostand = 1500 € ist, also f(t) = 1500:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 5,993 Jahre ist also der Kontostand = 1500 €.
