nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 3 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 3 )
= 3 lg( x )
= 3 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 20 x 4 ) + lg( 4 x 2 ) + lg( 1 8 x 6 ) soweit wie möglich.

Lösung einblenden

lg( 20 x 4 ) + lg( 4 x 2 ) + lg( 1 8 x 6 )

= lg( 20 x 4 ) + lg( 4 x 2 ) + lg( 1 8 x -6 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 20 ) + lg( x 4 ) + ( lg( 4 ) + lg( x 2 ) ) + ( lg( 1 8 ) + lg( 1 x 6 ) )

= lg( 20 ) + lg( x 4 ) + lg( 4 ) + lg( x 2 ) + lg( 1 8 ) + lg( 1 x 6 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 20 ) +4 lg( x ) + lg( 4 ) +2 lg( x ) + lg( 1 8 ) -6 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 20 ) +4 lg( x ) + lg( 4 ) +2 lg( x ) + lg( 1 ) - lg( 8 ) -6 lg( x )

= lg( 20 ) - lg( 8 ) + lg( 4 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 20 8 · 4 )

= lg( 10 )

= lg( 10 )

= 1

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= - e 0,4x -1,2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,4x -1,2 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,4x -1,2 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -1 vor e 0,4x -1,2 wird e 0,4x -1,2 an der x-Achse gespiegelt. Dadurch liegen bei - e 0,4x -1,2 die Funktionswerte zwischen -∞ und 0.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

- e 0,4x -1,2 = y |:-1
e 0,4x -1,2 = -1 y |ln(⋅)
0,4x -1,2 = ln( -y )
0,4x -1,2 = ln( -y ) | +1,2
0,4x = ln( -y ) +1,2 |:0,4
x = 1 0,4 ln( -y ) + 1,2 0,4

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,4 ln( -x ) + 1,2 0,4

und erhalten so die Umkehrfunktion f - (x) = 1 0,4 ln( -x ) + 1,2 0,4

Exponentialterm mit Halbwertszeit best.

Beispiel:

Alle 3,2 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 1000 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).

Also 3.2 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 3,2 = 2 | 3,2
a = 2 1 3,2

Das gesuchte a ist somit 2 1 3,2 ≈ 1.24, der gesuchte Funktionsterm f(t)= 1000 1,24 t

a und ein Funktionswert gegeben

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 15% vermehrt. Nach 12 Wochen zählt man bereits 42802 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 10 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 14000 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Zunahme um 15% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 15% dazukommen,
also Bneu = B + 15 100 ⋅B = (1 + 15 100 ) ⋅ B = 1,15 ⋅ B. Somit ist das a=1,15.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 1,15 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 12 Wochen der Bestand 42802 Nutzer ist, also f(12) = 42802. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 1,15 t ein:

c ⋅ 1.1512 = 42802

c ⋅ 5.35025 = 42802 | : 5.35025

c = 8000

Damit ergibt sich der Funktionsterm f(t)= 8000 1,15 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=10 Wochen, also f(10):

f(10) = 8000 1,15 10 32364,462.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 14000 Nutzer ist, also f(t) = 14000:

8000 1,15 t = 14000 |:8000
1,15 t = 7 4 |lg(⋅)
lg( 1,15 t ) = lg( 7 4 )
t · lg( 1,15 ) = lg( 7 4 ) |: lg( 1,15 )
t = lg( 7 4 ) lg( 1,15 )
t = 4,0041

Nach ca. 4,004 Wochen ist also die Anzahl der Nutzer = 14000 Nutzer.