Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
= | | | ||
= | |ln(⋅) | ||
= |
= | | | ||
= | |: | ||
= |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
In einem Land halbiert sich die Anzahl einer bestimmten Insektenart alle 9,6 Jahre. Zu Beginn der Beobachtung wurden 10 Millionen dieser Insekten geschätzt.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl in Milionen der Insekten in Millionen nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 10 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga().
Also 9.6 = loga(). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
= | | | ||
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 20% vermehrt. Nach 10 Wochen zählt man bereits 43342,15 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 5 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 37000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 20% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 20% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Wochen der Bestand 43342.15 Nutzer ist,
also f(10) = 43342.15. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.210 = 43342.15
c ⋅ 6.19174 = 43342.15 | : 6.19174
c = 7000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=5 Wochen, also f(5):
f(5) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 37000 Nutzer ist, also f(t) = 37000:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 9,132 Wochen ist also die Anzahl der Nutzer = 37000 Nutzer.