Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am negativen Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion an der x-Achse gespiegelt (und noch in y-Richtung gestreckt) wurde.
Da bei zu jedem Funktionswert von noch 1 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 1 nach oben verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Dadurch schneidet der Graph von f die x-Achse.
- Die Funktionswerte werden also immer kleiner, die Funktion ist also streng monoton fallend.
- Für x → ∞ strebt gegen .
- Für x → - ∞ strebt gegen = .
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn
= 0 ist, also für x =
.
Dann muss ja der y-Wert fk( ) = = = sein.
Da bei x = bei ( ) auch das Vorzeichen wechselt, muss dieser Punkt P( | ) im abgebildeten Graph bei P(1| ) sein.
Für den x-Wert dieses Punkts P gilt somit = 1
Also gilt k =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 105% - 100% = 5 %
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 2% seines Bestands. 2 Tage nach Beobachtungsbeginn sind nur noch 57,62kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 4 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 50kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Abnahme um 2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,98 ⋅ B. Somit ist das a=0,98.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 2 Tage der Bestand 57.62 kg ist, also f(2) = 57.62. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 0.982 = 57.62
c ⋅ 0.9604 = 57.62 | : 0.9604
c = 60
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=4 Tage, also f(4):
f(4) = ≈ 55,342.
zu b)
Hier wird gefragt, wann der Bestand = 50 kg ist, also f(t) = 50:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 9,025 Tage ist also der Bestand = 50 kg.
