nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 9 ( 1 27 ) .

Lösung einblenden

Zuerst schreiben wir 1 27 um: 1 27 = 27 -1

Man kann erkennen, dass 27 eine Potenz ist: 27 = 3 3

Also schreiben wir 1 27 = 27 -1 = ( 3 3 ) -1 = 3 -3

Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis 9 suchen und 9 gerade 3² ist (also 3 = 9 = 9 1 2 ), formen wir 3 -3 noch so um, dass sie 9 als Basis hat:

3 -3 = ( 9 1 2 ) -3 = 9 - 3 2

log 9 ( 1 27 ) = log 9 ( 3 -3 ) heißt, dass wir den Logarithmus von 3 -3 = 9 - 3 2 zur Basis 9 suchen, also die Hochzahl mit der man 9 potenzieren muss, um auf 3 -3 = 9 - 3 2 zu kommen.

Also was muss in das Kästchen, damit 9 = 3 -3 = 9 - 3 2 gilt.

Damit steht die Lösung praktisch schon da: log 9 ( 1 27 ) = log 9 ( 3 -3 ) = log 9 ( 9 - 3 2 ) = - 3 2 , eben weil 9 - 3 2 = 1 27 gilt .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| - 1 2 ), also gilt f(0)= - 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: - 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = - 1 2 , also f(x)= - 1 2 a x .

Außerdem können wir den Punkt (1|-1) auf dem Graphen ablesen, also git f(1) = -1.

In unseren Funktionsterm f(x)= - 1 2 a x eingesezt bedeutet das: -1 = - 1 2 a = - 1 2 a .

Es gilt also: -1 = - 1 2 a | ⋅ -2

2 = a

Somit ist der Funtionsterm: f(x)= - 1 2 2 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -3 e -0,4x +3 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,4x ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,4x für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -3 vor e -0,4x wird e -0,4x an der x-Achse gespiegelt. Dadurch liegen bei -3 e -0,4x die Funktionswerte zwischen -∞ und 0.

Durch die +3 hinter dem -3 e -0,4x wird zu allen Funktionswerten von -3 e -0,4x noch 3 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y < 3}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-3 e -0,4x +3 = y | -3
-3 e -0,4x = y -3 |:-3
e -0,4x = - 1 3 y +1 |ln(⋅)
-0,4x = ln( - 1 3 y +1 ) |:-0,4
x = - 1 0,4 ln( - 1 3 y +1 )
x = - 5 2 ln( - 1 3 y +1 )

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 5 2 ln( - 1 3 x +1 )

und erhalten so die Umkehrfunktion f - (x) = - 5 2 ln( - 1 3 x +1 )

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 6% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 6% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 6% weggehen,
also Bneu = B - 6 100 ⋅B = (1 - 6 100 ) ⋅ B = 0,94 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,94.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.94( 1 2 ) ≈ 11.2 Jahre

a und ein Funktionswert gegeben

Beispiel:

In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 14% abnimmt. 6 Jahre nach Beobachtungsbeginn werden nur noch 4,85 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 8 Jahren? b) Wann erwartet man nur noch 3,6 Millionen dieser Insekten?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Abnahme um 14% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 14% weggehen,
also Bneu = B - 14 100 ⋅B = (1 - 14 100 ) ⋅ B = 0,86 ⋅ B. Somit ist das a=0,86.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 0,86 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 4.85 Millionen Insekten ist, also f(6) = 4.85. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 0,86 t ein:

c ⋅ 0.866 = 4.85

c ⋅ 0.40457 = 4.85 | : 0.40457

c = 12

Damit ergibt sich der Funktionsterm f(t)= 12 0,86 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=8 Jahre, also f(8):

f(8) = 12 0,86 8 3,591.

zu b)

Hier wird gefragt, wann der Bestand = 3.6 Millionen Insekten ist, also f(t) = 3.6:

12 0,86 t = 3,6 |:12
0,86 t = 0,3 |lg(⋅)
lg( 0,86 t ) = lg( 0,3 )
t · lg( 0,86 ) = lg( 0,3 ) |: lg( 0,86 )
t = lg( 0,3 ) lg( 0,86 )
t = 7,9827

Nach ca. 7,983 Jahre ist also der Bestand = 3.6 Millionen Insekten.