Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
31 =
Es gilt somit: 1 <
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
3 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 75% = 25 %
c und a gegeben
Beispiel:
Ein Konto wird mit 1% verzinst. Zu Beginn sind 3000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 10 Jahren? b) Wann ist der Kontostand auf 3500€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 1% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 1% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=10 Jahre, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Kontostand = 3500 € ist, also f(t) = 3500:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 15,492 Jahre ist also der Kontostand = 3500 €.
