Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
1. Logarithmusgesetz einfach
Beispiel:
Vereinfache so, dass das Argument des Logarithmus möglichst einfach wird.
Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
=
=
=
=
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
4 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|: |
|
|
= | |ln(⋅) | |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Bei einem Staat mit 60 Millionen Einwohner geht man davon aus, dass die Einwohnerzahl exponentiell abnimmt. Nach 69 Jahren hat sich die Bevölkerung halbiert?Bestimme den Funktionsterm der Exponentialfunktion, die die Einwohnerzahl in Millionen Einwohner nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 69 = loga(
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
Ein Staat verliert jedes Jahr 2,9% seiner Bevölkerung. Nach 10 Jahren hat der Staat noch 44,7 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 13 Jahren? b) Wann hat das Land nur noch 40 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 2.9% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.9% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Jahre der Bestand 44.7 Millionen Einwohner ist,
also f(10) = 44.7. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.97110 = 44.7
c ⋅ 0.74506 = 44.7 | : 0.74506
c = 60
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Jahre, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 40 Millionen Einwohner ist, also f(t) = 40:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 13,778 Jahre ist also der Bestand = 40 Millionen Einwohner.
