Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = =
Wenn man das mit f(x) = = vergleicht, kann man erkennen, dass f(-x) = gerade das Negative von f(x), also -f(x) = ist.
Es gilt also: f(-x) = -f(x)
Somit liegt bei f Punktsymmetrie bezüglich des Ursprungs vor.
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Konto wird mit 1,3% verzinst.Bestimme die Zeit bis sich der Kontostand verdoppelt hat.
Die prozentuale Zunahme um 1.3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 1.3% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,013 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=1,013.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.013() ≈ 53.66 Jahre
a und ein Funktionswert gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 14% abnimmt. 10 Jahre nach Beobachtungsbeginn werden nur noch 2,66 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 5 Jahren? b) Wann erwartet man nur noch 3,1 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Abnahme um 14% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 14% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,86 ⋅ B. Somit ist das a=0,86.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Jahre der Bestand 2.66 Millionen Insekten ist, also f(10) = 2.66. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 0.8610 = 2.66
c ⋅ 0.2213 = 2.66 | : 0.2213
c = 12
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=5 Jahre, also f(5):
f(5) = ≈ 5,645.
zu b)
Hier wird gefragt, wann der Bestand = 3.1 Millionen Insekten ist, also f(t) = 3.1:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 8,975 Jahre ist also der Bestand = 3.1 Millionen Insekten.
