Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
Wenn wir jetzt die
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
e 6 10 x - 2 k
Da jedoch der zweite Summand3 k
Denn für x → -∞ strebt fk(x) → 0 +3 k
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = 5, somit muss3 k
Also gilt k =5 3
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
= |
|
|: |
|
= | |ln(⋅) | |
|
= |
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Staat verliert jedes Jahr 4% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?
Die prozentuale Abnahme um 4% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 4% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.96(
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 5% seines Bestands. 2 Tage nach Beobachtungsbeginn sind nur noch 18,05kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 11 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 16,3kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 5% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 5% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 2 Tage der Bestand 18.05 kg ist,
also f(2) = 18.05. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.952 = 18.05
c ⋅ 0.9025 = 18.05 | : 0.9025
c = 20
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=11 Tage, also f(11):
f(11) =
zu b)
Hier wird gefragt, wann der Bestand = 16.3 kg ist, also f(t) = 16.3:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 3,988 Tage ist also der Bestand = 16.3 kg.