nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 9 ( 1 27 ) .

Lösung einblenden

Zuerst schreiben wir 1 27 um: 1 27 = 27 -1

Man kann erkennen, dass 27 eine Potenz ist: 27 = 3 3

Also schreiben wir 1 27 = 27 -1 = ( 3 3 ) -1 = 3 -3

Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis 9 suchen und 9 gerade 3² ist (also 3 = 9 = 9 1 2 ), formen wir 3 -3 noch so um, dass sie 9 als Basis hat:

3 -3 = ( 9 1 2 ) -3 = 9 - 3 2

log 9 ( 1 27 ) = log 9 ( 3 -3 ) heißt, dass wir den Logarithmus von 3 -3 = 9 - 3 2 zur Basis 9 suchen, also die Hochzahl mit der man 9 potenzieren muss, um auf 3 -3 = 9 - 3 2 zu kommen.

Also was muss in das Kästchen, damit 9 = 3 -3 = 9 - 3 2 gilt.

Damit steht die Lösung praktisch schon da: log 9 ( 1 27 ) = log 9 ( 3 -3 ) = log 9 ( 9 - 3 2 ) = - 3 2 , eben weil 9 - 3 2 = 1 27 gilt .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|-1), also gilt f(0)=-1.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: -1 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = -1 , also f(x)= - a x .

Außerdem können wir den Punkt (1|-4) auf dem Graphen ablesen, also git f(1) = -4.

In unseren Funktionsterm f(x)= - a x eingesezt bedeutet das: -4 = -a = -a .

Es gilt also: -4 = -a | ⋅ -1

4 = a

Somit ist der Funtionsterm: f(x)= - 4 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -3 e 0,2x -0,2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,2x -0,2 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,2x -0,2 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -3 vor e 0,2x -0,2 wird e 0,2x -0,2 an der x-Achse gespiegelt. Dadurch liegen bei -3 e 0,2x -0,2 die Funktionswerte zwischen -∞ und 0.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-3 e 0,2x -0,2 = y |:-3
e 0,2x -0,2 = - 1 3 y |ln(⋅)
0,2x -0,2 = ln( - 1 3 y )
0,2x -0,2 = ln( - 1 3 y ) | +0,2
0,2x = ln( - 1 3 y ) +0,2 |:0,2
x = 1 0,2 ln( - 1 3 y ) + 0,2 0,2

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,2 ln( - 1 3 x ) + 0,2 0,2

und erhalten so die Umkehrfunktion f - (x) = 1 0,2 ln( - 1 3 x ) + 0,2 0,2

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 6% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 6% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 6% weggehen,
also Bneu = B - 6 100 ⋅B = (1 - 6 100 ) ⋅ B = 0,94 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,94.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.94( 1 2 ) ≈ 11.2 Jahre

c und ein Funktionswert gegeben

Beispiel:

Von einem radioaktiven Element sind zu Beobachtungsbeginn 30kg vorhanden. Nach 8 Tagen nach sind nur noch 12,91kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 11 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 20kg vorhanden?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=30 kann man direkt aus der Aufgabe heraus lesen.

Somit wissen wir bereits, dass der Funktionsterm f(t)= 30 a t mit einem Wachstumsfaktor a sein muss.

Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 8 Tage der Bestand 12.91 kg ist, also f(8) = 12.91. Dies setzen wir in unsern bisherigen Funktionterm f(t)= 30 a t ein:

30 a 8 = 12,91 |:30
a 8 = 12,91 30 | 8
a1 = - 12,91 30 8 -0,9
a2 = 12,91 30 8 0,9

Da der Wachstumsfaktor a immer positiv sein muss, ist a= 0,9 ≈ 0.9 die einzige sinnvolle Lösung.

Damit ergibt sich der Funktionsterm f(t)= 30 0,9 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=11 Tage, also f(11):

f(11) = 30 0,9 11 9,414.

zu b)

Hier wird gefragt, wann der Bestand = 20 kg ist, also f(t) = 20:

30 0,9 t = 20 |:30
0,9 t = 2 3 |lg(⋅)
lg( 0,9 t ) = lg( 2 3 )
t · lg( 0,9 ) = lg( 2 3 ) |: lg( 0,9 )
t = lg( 2 3 ) lg( 0,9 )
t = 3,8484

Nach ca. 3,848 Tage ist also der Bestand = 20 kg.