Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (einfach)
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn( x + 2 k ) · e x + k = 0 ist, also für x =x + 2 k .- 2 k
Dann muss ja der y-Wert fk( ) =- 2 k =( ( - 2 k ) + 2 k ) · e ( - 2 k ) + k + 2 =0 + 2 sein.2
Da bei x = bei (- 2 k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x + 2 k |- 2 k ) im abgebildeten Graph bei P(1|2 ) sein.2
Für den x-Wert dieses Punkts P gilt somit = 1- 2 k
Also gilt k =- 1 2
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.871(
c und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 8000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 4 Jahren beträgt der Kontostand bereits 8659,46€. a) Wie hoch ist der Kontostand 6 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 8700€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=8000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 4 Jahre der Bestand 8659.46 € ist,
also f(4) = 8659.46. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
=
|
| a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=6 Jahre, also f(6):
f(6) =
zu b)
Hier wird gefragt, wann der Kontostand = 8700 € ist, also f(t) = 8700:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 4,236 Jahre ist also der Kontostand = 8700 €.
