Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
k x · e k x + k
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|-3) gut erkennen. Es gilt folglich.
fk( ) =0 k · 0 · e k ⋅ 0 + k + k k k = - 3
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
|ln(⋅) |
|
= |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Staat verliert jedes Jahr 3% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?
Die prozentuale Abnahme um 3% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 3% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.97(
c und a gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 14% abnimmt. Zu Beginn der Beobachtung wurden 13 Millionen dieser Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 8 Jahren? b) Wann erwartet man nur noch 3 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=13 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 14% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 14% weggehen,
also Bneu
= B -
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Jahre, also f(8):
f(8) =
zu b)
Hier wird gefragt, wann der Bestand = 3 Millionen Insekten ist, also f(t) = 3:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 9,722 Jahre ist also der Bestand = 3 Millionen Insekten.