Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Man kann erkennen, dass
Also schreiben wir
Da wir nicht den Logarithmus zur Basis 2 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
niemals = 0 werden kann.- e - 9 10 x - k
Da jedoch der zweite Summand abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.2 k
Denn für x → +∞ strebt fk(x) → 0 +2 k
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = 2, somit muss = 2 gelten;2 k
Also gilt k =1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 18% vermehrt. Wie lange braucht es, bis sich die Nutzerzahl verdoppelt hat?
Die prozentuale Zunahme um 18% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 18% dazukommen,
also Bneu
= B +
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.18(
c und ein Funktionswert gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart exponentiell abnimmt. Zu Beginn der Beobachtung wurden 13 Millionen dieser Insekten geschätzt. 12 Jahre nach Beobachtungsbeginn werden noch 2,44 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 13 Jahren? b) Wann erwartet man nur noch 3 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=13 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 12 Jahre der Bestand 2.44 Millionen Insekten ist,
also f(12) = 2.44. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Jahre, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 3 Millionen Insekten ist, also f(t) = 3:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 10,529 Jahre ist also der Bestand = 3 Millionen Insekten.
