Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
2. Logarithmusgesetz einfach
Beispiel:
Vereinfache den Term zu einem Vielfachen von .
Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
=
=
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 3,2 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 1000 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 3.2 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 15% vermehrt. Nach 12 Wochen zählt man bereits 42802 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 10 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 14000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 15% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 15% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 12 Wochen der Bestand 42802 Nutzer ist,
also f(12) = 42802. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.1512 = 42802
c ⋅ 5.35025 = 42802 | : 5.35025
c = 8000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=10 Wochen, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 14000 Nutzer ist, also f(t) = 14000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 4,004 Wochen ist also die Anzahl der Nutzer = 14000 Nutzer.
