nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term -2 lg( x 3 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
-2 lg( x 3 )
= -6 lg( x )
= -6 lg( x )

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| - 1 2 ), also gilt f(0)= - 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: - 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = - 1 2 , also f(x)= - 1 2 a x .

Außerdem können wir den Punkt (1|-1) auf dem Graphen ablesen, also git f(1) = -1.

In unseren Funktionsterm f(x)= - 1 2 a x eingesezt bedeutet das: -1 = - 1 2 a = - 1 2 a .

Es gilt also: -1 = - 1 2 a | ⋅ -2

2 = a

Somit ist der Funtionsterm: f(x)= - 1 2 2 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= 3 e x -3 +1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent x -3 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e x -3 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Auch mit dem positiven Koeffizienten 3 vor e x -3 können die Funktionswerte von 3 e x -3 alles zwischen 0 und ∞ annehmen.

Durch die +1 hinter dem 3 e x -3 wird zu allen Funktionswerten von 3 e x -3 noch 1 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > 1}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

3 e x -3 +1 = y | -1
3 e x -3 = y -1 |:3
e x -3 = 1 3 y - 1 3 |ln(⋅)
x -3 = ln( 1 3 y - 1 3 )
x -3 = ln( 1 3 y - 1 3 ) | +3
x = ln( 1 3 y - 1 3 ) +3

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = ln( 1 3 x - 1 3 ) +3

und erhalten so die Umkehrfunktion f - (x) = ln( 1 3 x - 1 3 ) +3

Halbwerts-/Verdoppl.-Zeit bestimmen

Beispiel:

Gegeben ist der Exponentialfunktion f mit f(t)= c · 0,902 t mit unbekanntem Anfangswert c.

Bestimme die Halbwertszeit.

Lösung einblenden

Den Wachstumsfaktor a kann direkt aus dem Funktionterm f(t)= c · 0,902 t ablesen: a=0.902.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.902( 1 2 ) ≈ 6.72 (Zeiteinheiten)

c und ein Funktionswert gegeben

Beispiel:

Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer. Nach 6 Wochen zählt man bereits 2313,06 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 8 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 3000 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=1000 kann man direkt aus der Aufgabe heraus lesen.

Somit wissen wir bereits, dass der Funktionsterm f(t)= 1000 a t mit einem Wachstumsfaktor a sein muss.

Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 6 Wochen der Bestand 2313.06 Nutzer ist, also f(6) = 2313.06. Dies setzen wir in unsern bisherigen Funktionterm f(t)= 1000 a t ein:

1000 a 6 = 2313,06 |:1000
a 6 = 2,31306 | 6
a1 = - 2,31306 6 = -1,15
a2 = 2,31306 6 = 1,15

Da der Wachstumsfaktor a immer positiv sein muss, ist a= 1,15 ≈ 1.15 die einzige sinnvolle Lösung.

Damit ergibt sich der Funktionsterm f(t)= 1000 1,15 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=8 Wochen, also f(8):

f(8) = 1000 1,15 8 3059,023.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 3000 Nutzer ist, also f(t) = 3000:

1000 1,15 t = 3000 |:1000
1,15 t = 3 |lg(⋅)
lg( 1,15 t ) = lg( 3 )
t · lg( 1,15 ) = lg( 3 ) |: lg( 1,15 )
t = lg( 3 ) lg( 1,15 )
t = 7,8606

Nach ca. 7,861 Wochen ist also die Anzahl der Nutzer = 3000 Nutzer.