nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 10000000x ) -5 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 10000000x ) -5 lg( x )
= lg( 10000000 ) + lg( x ) -5 lg( x )
= lg( 10 7 ) + lg( x ) -5 lg( x )
= 7 + lg( x ) -5 lg( x )
= -4 lg( x ) +7

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| - 1 2 ), also gilt f(0)= - 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: - 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = - 1 2 , also f(x)= - 1 2 a x .

Außerdem können wir den Punkt (1|-1) auf dem Graphen ablesen, also git f(1) = -1.

In unseren Funktionsterm f(x)= - 1 2 a x eingesezt bedeutet das: -1 = - 1 2 a = - 1 2 a .

Es gilt also: -1 = - 1 2 a | ⋅ -2

2 = a

Somit ist der Funtionsterm: f(x)= - 1 2 2 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= 3 e -0,1x +0,1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,1x +0,1 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,1x +0,1 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Auch mit dem positiven Koeffizienten 3 vor e -0,1x +0,1 können die Funktionswerte von 3 e -0,1x +0,1 alles zwischen 0 und ∞ annehmen.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

3 e -0,1x +0,1 = y |:3
e -0,1x +0,1 = 1 3 y |ln(⋅)
-0,1x +0,1 = ln( 1 3 y )
-0,1x +0,1 = ln( 1 3 y ) | -0,1
-0,1x = ln( 1 3 y ) -0,1 |:(-0,1 )
x = - 1 0,1 ln( 1 3 y ) + 0,1 0,1

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 1 0,1 ln( 1 3 x ) + 0,1 0,1

und erhalten so die Umkehrfunktion f - (x) = - 1 0,1 ln( 1 3 x ) + 0,1 0,1

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 6 1,45 t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 6

f(1) = 6 1,45

f(2) = 6 1,451,45

f(3) = 6 1,451,451,45

f(4) = 6 1,451,451,451,45

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 1,45 multipliziert. Da 1,45 > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das 1,45-fache, also auf 145 % des vorherigen Funktionswertes.

Die prozentuale Zunahme beträgt also 145% - 100% = 45 %

c und a gegeben

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 19% vermehrt. Zu Beginn der Aufzeichnung registriert man 2000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 4 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 11000 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=2000 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Zunahme um 19% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 19% dazukommen,
also Bneu = B + 19 100 ⋅B = (1 + 19 100 ) ⋅ B = 1,19 ⋅ B. Somit ist das a=1,19.

Damit ergibt sich der Funktionsterm f(t)= 2000 1,19 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=4 Wochen, also f(4):

f(4) = 2000 1,19 4 4010,678.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 11000 Nutzer ist, also f(t) = 11000:

2000 1,19 t = 11000 |:2000
1,19 t = 11 2 |lg(⋅)
lg( 1,19 t ) = lg( 11 2 )
t · lg( 1,19 ) = lg( 11 2 ) |: lg( 1,19 )
t = lg( 11 2 ) lg( 1,19 )
t = 9,8

Nach ca. 9,8 Wochen ist also die Anzahl der Nutzer = 11000 Nutzer.