Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = = =
Wenn man das mit f(x) = = vergleicht, kann man erkennen, dass f(-x) = gerade das Negative von f(x), also -f(x) = ist.
Es gilt also: f(-x) = -f(x)
Somit liegt bei f Punktsymmetrie bezüglich des Ursprungs vor.
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|-5) gut erkennen. Es gilt folglich.
fk() = = = -5=
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 14%. Bestimme die Zeit bis sich die Größe der Bakterienkultur verdoppelt hat.
Die prozentuale Zunahme um 14% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 14% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,14 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=1,14.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.14() ≈ 5.29 Stunden
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 11%. Zu Beobachtungsbeginn umfasste die Kultur 24 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 5 Stunden? b) Wann umfasst die Kultur 54 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=24 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 11% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 11% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,11 ⋅ B. Somit ist das a=1,11.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=5 Stunden, also f(5):
f(5) = ≈ 40,441.
zu b)
Hier wird gefragt, wann der Bestand = 54 Millionen Bakterien ist, also f(t) = 54:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 7,771 Stunden ist also der Bestand = 54 Millionen Bakterien.
