nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (8) .

Lösung einblenden

Wir suchen den Logarithmus von 8 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 8 zu kommen.

Also was muss in das Kästchen, damit 2 = 8 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (8) = 3, eben weil 23 = 8 gilt .

Parameter mit Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist die Funktionenschar fk(x)= - e - 7 10 x -5 k +10 k . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.

Lösung einblenden

Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(

Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.

  • Hier kann man schnell erkennen, dass der Exponentialterm - e - 7 10 x -5 k niemals = 0 werden kann.
    Da jedoch der zweite Summand 10 k abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.
    Denn für x → +∞ strebt fk(x) → 0 + 10 k
    Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = 4, somit muss 10 k = 4 gelten;
    Also gilt k = 2 5

Der abgebildete Graph ist somit der von f 2 5

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= e -0,1x +0,1 +3 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,1x +0,1 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,1x +0,1 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch die +3 hinter dem e -0,1x +0,1 wird zu allen Funktionswerten von e -0,1x +0,1 noch 3 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > 3}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

e -0,1x +0,1 +3 = y | -3
e -0,1x +0,1 = y -3 |ln(⋅)
-0,1x +0,1 = ln( y -3 )
-0,1x +0,1 = ln( y -3 ) | -0,1
-0,1x = ln( y -3 ) -0,1 |:(-0,1 )
x = - 1 0,1 ln( y -3 ) + 0,1 0,1

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 1 0,1 ln( x -3 ) + 0,1 0,1

und erhalten so die Umkehrfunktion f - (x) = - 1 0,1 ln( x -3 ) + 0,1 0,1

Halbwerts-/Verdoppl.-Zeit bestimmen

Beispiel:

Gegeben ist der Exponentialfunktion f mit f(t)= c · 0,941 t mit unbekanntem Anfangswert c.

Bestimme die Halbwertszeit.

Lösung einblenden

Den Wachstumsfaktor a kann direkt aus dem Funktionterm f(t)= c · 0,941 t ablesen: a=0.941.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.941( 1 2 ) ≈ 11.4 (Zeiteinheiten)

c und a gegeben

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 17% vermehrt. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 7 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 4000 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=1000 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu = B + 17 100 ⋅B = (1 + 17 100 ) ⋅ B = 1,17 ⋅ B. Somit ist das a=1,17.

Damit ergibt sich der Funktionsterm f(t)= 1000 1,17 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=7 Wochen, also f(7):

f(7) = 1000 1,17 7 3001,242.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 4000 Nutzer ist, also f(t) = 4000:

1000 1,17 t = 4000 |:1000
1,17 t = 4 |lg(⋅)
lg( 1,17 t ) = lg( 4 )
t · lg( 1,17 ) = lg( 4 ) |: lg( 1,17 )
t = lg( 4 ) lg( 1,17 )
t = 8,8297

Nach ca. 8,83 Wochen ist also die Anzahl der Nutzer = 4000 Nutzer.