Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: + .
+
Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:
=
=
=
= 8
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 35%. Bestimme die Zeit bis sich die Größe der Bakterienkultur verdoppelt hat.
Die prozentuale Zunahme um 35% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 35% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,35 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=1,35.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.35() ≈ 2.31 Stunden
c und a gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 13% seines Bestands. Zu Beginn sind 90kg dieses Elements vorhanden. a) Wie viel kg des Elements sind noch nach 6 Tagen da? b) Wann sind nur noch 10kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=90 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 13% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 13% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,87 ⋅ B. Somit ist das a=0,87.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Tage, also f(6):
f(6) = ≈ 39,026.
zu b)
Hier wird gefragt, wann der Bestand = 10 kg ist, also f(t) = 10:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 15,778 Tage ist also der Bestand = 10 kg.
