Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = =
Wenn man das mit f(x) = vergleicht, kann man erkennen, dass f(-x) = gerade das Negative von f(x), also -f(x) = ist.
Es gilt also: f(-x) = -f(x)
Somit liegt bei f Punktsymmetrie bezüglich des Ursprungs vor.
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit mit unbekanntem Anfangswert c.
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm ablesen: a=0.898.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.898() ≈ 6.44 (Zeiteinheiten)
c und a gegeben
Beispiel:
Ein Konto wird mit 4% verzinst. Zu Beginn sind 8000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 8 Jahren? b) Wann ist der Kontostand auf 13000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=8000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 4% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 4% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,04 ⋅ B. Somit ist das a=1,04.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=8 Jahre, also f(8):
f(8) = ≈ 10948,552.
zu b)
Hier wird gefragt, wann der Kontostand = 13000 € ist, also f(t) = 13000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 12,379 Jahre ist also der Kontostand = 13000 €.
