Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log berechnen
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
Wenn wir jetzt die
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
3 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.915(
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 26%. 10 Stunden nach Beobachtungsbeginn sind es bereits 40,34Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 13 Stunden? b) Wann umfasst die Kultur 34 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 26% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 26% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Stunden der Bestand 40.34 Millionen Bakterien ist,
also f(10) = 40.34. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.2610 = 40.34
c ⋅ 10.08569 = 40.34 | : 10.08569
c = 4
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Stunden, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 34 Millionen Bakterien ist, also f(t) = 34:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 9,26 Stunden ist also der Bestand = 34 Millionen Bakterien.
