Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: -
Jetzt wenden wir das Logarithmusgesetz log(
=
=
= 0
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 55% = 45 %
c und ein Funktionswert gegeben
Beispiel:
Bei einer Bakterienkultur geht man von exponentiellem Wachstum aus. Zu Beobachtungsbeginn umfasste die Kultur 25 Milionen Bakterien. 11 Stunden nach Beobachtungsbeginn sind es bereits 140,6Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 13 Stunden? b) Wann umfasst die Kultur 55 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=25 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 11 Stunden der Bestand 140.6 Millionen Bakterien ist,
also f(11) = 140.6. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
|
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Stunden, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 55 Millionen Bakterien ist, also f(t) = 55:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 5,022 Stunden ist also der Bestand = 55 Millionen Bakterien.
