Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
3-3 =
Es gilt somit: -3 <
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
niemals = 0 werden kann.e 7 10 x + k
Da jedoch der zweite Summand abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.k
Denn für x → -∞ strebt fk(x) → 0 +k
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = -1, somit muss = -1 gelten;k
Also gilt k =- 1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein radioaktives Element verliert jeden Tag 4,2% seines Bestands. Bestimme die Halbwertszeit dieses radioaktives Elements.
Die prozentuale Abnahme um 4.2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 4.2% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.958(
c und ein Funktionswert gegeben
Beispiel:
Bei einer Bakterienkultur geht man von exponentiellem Wachstum aus. Zu Beobachtungsbeginn umfasste die Kultur 28 Milionen Bakterien. 4 Stunden nach Beobachtungsbeginn sind es bereits 70,57Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 5 Stunden? b) Wann umfasst die Kultur 68 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=28 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 4 Stunden der Bestand 70.57 Millionen Bakterien ist,
also f(4) = 70.57. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=5 Stunden, also f(5):
f(5) =
zu b)
Hier wird gefragt, wann der Bestand = 68 Millionen Bakterien ist, also f(t) = 68:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 3,839 Stunden ist also der Bestand = 68 Millionen Bakterien.
