Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
3-3 =
Es gilt somit: -3 <
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann
niemals = 0 werden.4 k e k x + 3 k - Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentiantermk x + 3 k recht schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote bei4 k e k x + 3 k erkennen.3
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.k x + 3 k
Wenn wir nunk x + 3 k = 0 | - ( )3 k k x = - 3 k |:( )k x = - 3 in fk einsetzen erhalten wir folgende Gleichung:- 3
fk( ) =- 3 =4 k e k ⋅ ( - 3 ) + 3 k + 3 4 k + 3
im abgebildeten Term können wir aber ja f( ) = 0 ablesen, es gilt somit:- 3 4 k + 3 = 0 | - 3 4 k = - 3 |: 4 k = = -0.75- 3 4
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.081(
c und a gegeben
Beispiel:
Ein Staat verliert jedes Jahr 3,1% seiner Bevölkerung. Zu Beobachtungsbeginn hat das Land 80 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 9 Jahren? b) Wann hat das Land nur noch 50 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=80 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 3.1% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 3.1% weggehen,
also Bneu
= B -
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=9 Jahre, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann der Bestand = 50 Millionen Einwohner ist, also f(t) = 50:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 14,925 Jahre ist also der Bestand = 50 Millionen Einwohner.
