Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
121 =
Es gilt somit: 1 <
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn( x + 4 k ) · e x + 2 k = 0 ist, also für x =x + 4 k .- 4 k
Dann muss ja der y-Wert fk( ) =- 4 k =( ( - 4 k ) + 4 k ) · e ( - 4 k ) + 2 k + 3 =0 + 3 sein.3
Da bei x = bei (- 4 k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x + 4 k |- 4 k ) im abgebildeten Graph bei P(3|3 ) sein.3
Für den x-Wert dieses Punkts P gilt somit = 3- 4 k
Also gilt k =- 3 4
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.888(
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 3% verzinst. 6 Jahre nach dem das Konto eröffnet wurde, sind bereits 8358,37€ auf dem Konto. a) Wie hoch ist der Kontostand 13 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 7700€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 3% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 8358.37 € ist,
also f(6) = 8358.37. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.036 = 8358.37
c ⋅ 1.19405 = 8358.37 | : 1.19405
c = 7000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=13 Jahre, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Kontostand = 7700 € ist, also f(t) = 7700:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 3,224 Jahre ist also der Kontostand = 7700 €.
