Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Spezielles Viereck erkennen
Beispiel:
Bei dieser Figur handelt es sich um ein/e (besondere(s)):
An den 4 rechten Winkeln und den 4 gleich langen Seiten kann man erkennen, dass es sich bei diesem Viereck um ein Quadrat handelt.
- Weil das abgebildete Viereck 2 gegenüber liegende Seiten hat, die parallel sind, ist dieses Viereck auch ein spezielles Trapez.
- Weil beim abgebildeten Viereck auf beiden Seiten die benachbarten Seiten gleich lang sind, ist dieses Viereck auch ein spezieller Drachen.
- Weil beim abgebildeten Viereck die gegenüber liegenden Seiten immer jeweils parallel und gleich lang sind, ist dieses Viereck auch ein spezielles Parallelogramm.
- Weil das abgebildete Viereck 4 gleich lange Seiten hat, ist dieses Viereck auch eine spezielle Raute.
- Weil das abgebildete Viereck 4 rechte Winkel hat, ist dieses Viereck auch ein spezielles Rechteck.
Das Viereck ist also: Quadrat, Rechteck, Raute, Parallelogramm, Drachen, Trapez, Viereck
Symmetrieachsen
Beispiel:
Finde die Symmetrieachsen.
Zeichne die Symmetrieachsen als Linien in die Abbildung ein.
Rechts sind die richtigen Symmetrieachsen zu sehen.
Punktsymmetrie erkennen
Beispiel:
Finde das Symmetriezentrum.
Klicke auf den Punkt, der das Symmetriezentrum der Figur ist. Falls die Figur nicht punktsymmetrisch ist, setze den entsprechenden Haken.
Diese Figur ist punktsymmetrisch. Das Symmetriezentrum (blauer Punkt) liegt genau in der Mitte.
Flächeneinheiten umrechnen
Beispiel:
Wandle die Fläche in die angegebene Einheit um: 58 a = ..... m²
58 a = 5800 m²
Flächeneinheit finden
Beispiel:
Bestimme die richtige Einheit: 39 ha = 3900⬜
Die nächst kleinere Flächeneinheit ist ja a, also sind 1 ha = 100 a.
Das bedeutet, dass 39 ha = 3900 a sind.
Flächeneinheiten verrechnen
Beispiel:
Berechne und gib das Ergebnis in mm² an
38 dm² - 57 cm²
Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:
38 dm² = 3800 cm²
Jetzt können wir die beiden Werte gut verrechnen:
38 dm² - 57 cm²
= 3800 cm² - 57 cm²
= 3743 cm²
= 374300 mm²
Flächeninhalt Rechteck
Beispiel:
Berechne den Flächeninhalt des Rechtecks mit gegebenen Seitenlängen: a = 6 km, b = 100 km
Den Flächeninhalt eines Rechtecks berechnet man durch Multiplizieren der Seitenlängen:
A = a ⋅ b
= 6 km ⋅ 100 km
= 600 km²
Umfang Rechteck
Beispiel:
Berechne den Umfang des Rechtecks mit gegebenen Seitenlängen: a = 7 km, b = 50 km
Beim Umfang eines Rechtecks kommt jede Seite zweimal vor (links und rechts, oben und unten):
U = 2 ⋅ a + 2 ⋅ b
= 2 ⋅ 7 km + 2 ⋅ 50 km
= 114 km
Umfang rückwärts
Beispiel:
Ein Rechteck ist 70 mm breit und hat einen Umfang von 156 mm. Wie lang ist es?
Den Umfang eines Rechtecks berechnet man durch durchs Addieren der 4 Seitem, von denen jeweils zwei gleich lang sind:
U = 2⋅a + 2⋅b
Also gilt: 156 mm = 2⋅⬜ + 2⋅70 mm
156 mm = 2⋅⬜ + 140 mm
Also muss der Abstand zwischen 156 und 140 (=16) gerade so groß wie 2⋅⬜ sein.
16 mm² = 2⋅⬜
Das Kästchen muss also die Hälfte von 16 mm, also 8 mm sein.
Umfang und Flächeninhalt Rechteck
Beispiel:
Berechne den Umfang und den Flächeninhalt des Rechtecks mit gegebenen Seitenlängen: a = 3 mm, b = 6 mm.
Beim Umfang eines Rechtecks kommt jede Seite zweimal vor (links und rechts, oben und unten):
U = 2 ⋅ a + 2 ⋅ b
= 2 ⋅ 3 mm + 2 ⋅ 6 mm
= 18 mm
Den Flächeninhalt eines Rechtecks berechnet man durch Multiplizieren der Seitenlängen:
A = a ⋅ b
= 3 mm ⋅ 6 mm
= 18 mm²
Flächeninhalt rückwärts
Beispiel:
Ein Rechteck ist 5 cm breit und hat einen Flächeninhalt von 55 cm². Wie lang ist es?
Den Flächeninhalt eines Rechtecks berechnet man durch Multiplizieren der Seitenlängen: A = a ⋅ b
Also gilt: 55 cm² = ⬜ ⋅5 cm
Das Kästchen kann man also mit 55 cm : 5 cm = 11 cm berechnen.
Umfang und Flächeninhalt gemischt
Beispiel:
Ein Rechteck ist 50 m lang und hat den Flächeninhalt A=550 m². Bestimme die Breite b und den Umfang U des Rechetcks.
Den Flächeninhalt eines Rechtecks berechnet man durch Multiplizieren der Seitenlängen: A = a ⋅ b
Also gilt: 550 m² = ⬜ ⋅50 m
Das Kästchen kann man also mit 550 m² : 50 m = 11 m berechnen.
Beim Umfang des Rechtecks kommt jede Seite zweimal vor (links und rechts, oben und unten):
U = 2 ⋅ a + 2 ⋅ b
= 2 ⋅ 11 m + 2 ⋅ 50 m
= 122 m
Flächeninhalt und Umfang - Knobeln
Beispiel:
Ein Rechteck hat den Flächeninhalt A = 120 mm² und den Umfang U = 68 mm. Bestimme die Seitenlängen a und b.
Der Flächeninhalt A = 120 des Rechtecks berechnet sich ja durch Multiplizieren der Seitenlängen. Also probieren wir alle Teiler von 120 mm² durch:
120 = 1 ⋅ 120, dann wäre der Umfang: U = 2 ⋅ 1 + 2 ⋅ 120 = 242
120 = 2 ⋅ 60, dann wäre der Umfang: U = 2 ⋅ 2 + 2 ⋅ 60 = 124
120 = 3 ⋅ 40, dann wäre der Umfang: U = 2 ⋅ 3 + 2 ⋅ 40 = 86
120 = 4 ⋅ 30, dann wäre der Umfang: U = 2 ⋅ 4 + 2 ⋅ 30 = 68
Mit den Seitenlängen 30 mm und 4 mm ist also der Flächeninhalt des Rechtecks A = 120 mm² und der Umfang U=68 mm.
Umfang von Figuren
Beispiel:
Bestimme den Umfang der Figur in cm. (2 Kästchen sind 1 cm lang)
Wir zählen einfach alle Teilstrecken - beginnend links unten gegen den Uhrzeigersinn - der Reihe nach zusammen,:
U = 2 cm + 1 cm + 2 cm + 2 cm + 4 cm + 3 cm = 14 cm.
Umfang im KoSy
Beispiel:
Zeichne das Viereck ABCD mit A(1|5), B(5|2), C(9|2) und D(5|5) in eine Koordinatensystem mit der Einheit 1 cm.
Bestimme den Umfang des Vierecks.
Wenn man die Punkte in ein Koordinatensystem einzeichnet, kann man die Teilstrecken abmessen und dann addieren:
U =
+
+
+
+
= 5 cm + 4 cm + 5 cm + 4 cm
=18 cm
Spezielle Dreiecke zeichnen
Beispiel:
Ergänze die Strecke zu einem Dreieck 𝐴𝐵𝐶 mit zwei gleich langen Seiten und .
Um ein Dreieck mit zwei gleich langen Seiten und zu bekommen, zeichnen wir ab besten die Strecke senkrecht nach oben, damit wir an den Kästchen die gleiche Länge wie (10 Kästchen oder 5 cm ) ablesen können. Wir müssen also den Punkt C einfach 10 Kästchen oberhalb von A einklicken.
Umfang und Inhalt von Figuren
Beispiel:
Gib den Flächeninhalt A der folgenden Figuren erst mithilfe von Kästchen und anschließend in der Einheit cm² an.
Wir unterteilen die Gesamtfläche in Rechtecke und Dreiecke (siehe Abbildung rechts):
Man kann an der Abbildung gut erkennen, dass das linke Dreieck gerade den halben Flächeninhalt des roten Rechtecks besitzt.
Das rote Rechteck, ist ja 2 Kästchen oder 1 cm breit und 4 Kästchen oder 2
cm hoch und besitzt somit den Flächeninhalt von 2⋅4 = 8 Kästchen oder 1 cm ⋅
2 cm = 2 cm².
Das lila Dreieck, also das halbe rote Rechteck, besteht somit aus 8 : 2 = 4 Kästchen und hat den Flächeninhalt somit: A0 =
2 : 2 = 1 cm².
Man kann an der Abbildung erkennen, dass das rechte Dreieck gerade den halben Flächeninhalt des roten Rechtecks auf der rechten
Seite besitzt.
Dieses rote Rechteck, ist ja 2 Kästchen oder 1 cm breit und 4 Kästchen oder 2
cm hoch und besitzt somit den Flächeninhalt von 2⋅4 = 8 Kästchen oder 1 cm ⋅
2 cm = 2 cm².
Das lila Dreieck, also das halbe rote Rechteck, besteht somit aus 8 : 2 = 4 Kästchen und hat den Flächeninhalt somit: A2 = 2 : 2 = 1 cm².
Für das restliche rein lila Rechteck kann man eine Breite von 2 Kästchen oder 1 cm und eine Höhe von 4
Kästchen oder 2 cm erkennen.
Es besitzt somit den Flächeninhalt von 2⋅4 =
8 Kästchen oder A1 = 1 cm ⋅ 2 cm
= 2 cm².
Somit besteht der gesamte Flächeninhalt aus 4 + 8 + 4 = 16 Kästchen. oder eben
A = 1 cm² + 2 cm² + 1 cm² = 4 cm² ( = 16 : 4, weil ja immer 4 Kästchen einem cm² entsprechen).
