Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 60% = 40 %
c und a gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 20% vermehrt. Zu Beginn der Aufzeichnung registriert man 3000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 11 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 23000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 20% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 20% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,2 ⋅ B. Somit ist das a=1,2.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=11 Wochen, also f(11):
f(11) = ≈ 22290,251.
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 23000 Nutzer ist, also f(t) = 23000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 11,172 Wochen ist also die Anzahl der Nutzer = 23000 Nutzer.
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 3000 Nutzer. Nach 7 Wochen zählt man bereits 12068,13 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 5 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 8000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 7 Wochen der Bestand 12068.13 Nutzer ist, also f(7) = 12068.13. Dies setzen wir in unsern bisherigen Funktionterm ein:
| = | |: | ||
| = | | | ||
|
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=5 Wochen, also f(5):
f(5) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 8000 Nutzer ist, also f(t) = 8000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 4,933 Wochen ist also die Anzahl der Nutzer = 8000 Nutzer.
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 6% verzinst. 4 Jahre nach dem das Konto eröffnet wurde, sind bereits 3787,43€ auf dem Konto. a) Wie hoch ist der Kontostand 7 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 4000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 6% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 6% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 4 Jahre der Bestand 3787.43 € ist,
also f(4) = 3787.43. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.064 = 3787.43
c ⋅ 1.26248 = 3787.43 | : 1.26248
c = 3000
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=7 Jahre, also f(7):
f(7) =
zu b)
Hier wird gefragt, wann der Kontostand = 4000 € ist, also f(t) = 4000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 4,937 Jahre ist also der Kontostand = 4000 €.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.922(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 14% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 14% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 14% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.86(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Von einem radioaktiven Element mit einer Halbwertszeit von 22,8 Jahren sind zu Beobachtungsbeginn 80kg vorhanden. Bestimme den Funktionsterm der Exponentialfunktion, die die Masse des radioaktiven Elements nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 22.8 = loga(
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Das gesuchte a ist somit
