Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache (oder auf das -fache), also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 95% = 5 %
c und a gegeben
Beispiel:
Ein Konto wird mit 3% verzinst. Zu Beginn sind 7000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 11 Jahren? b) Wann ist der Kontostand auf 11000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=7000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 3% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,03 ⋅ B. Somit ist das a=1,03.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=11 Jahre, also f(11):
f(11) = ≈ 9689,637.
zu b)
Hier wird gefragt, wann der Kontostand = 11000 € ist, also f(t) = 11000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 15,291 Jahre ist also der Kontostand = 11000 €.
c und ein Funktionswert gegeben
Beispiel:
Bei einer Bakterienkultur geht man von exponentiellem Wachstum aus. Zu Beobachtungsbeginn umfasste die Kultur 16 Milionen Bakterien. 4 Stunden nach Beobachtungsbeginn sind es bereits 44,31Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 8 Stunden? b) Wann umfasst die Kultur 416 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=16 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 4 Stunden der Bestand 44.31 Millionen Bakterien ist, also f(4) = 44.31. Dies setzen wir in unsern bisherigen Funktionterm ein:
| = | |: | ||
| = | | | ||
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Stunden, also f(8):
f(8) =
zu b)
Hier wird gefragt, wann der Bestand = 416 Millionen Bakterien ist, also f(t) = 416:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 12,795 Stunden ist also der Bestand = 416 Millionen Bakterien.
a und ein Funktionswert gegeben
Beispiel:
Ein Staat verliert jedes Jahr 2,8% seiner Bevölkerung. Nach 8 Jahren hat der Staat noch 43,82 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 9 Jahren? b) Wann hat das Land nur noch 45 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 2.8% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.8% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 8 Jahre der Bestand 43.82 Millionen Einwohner ist,
also f(8) = 43.82. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.9728 = 43.82
c ⋅ 0.79676 = 43.82 | : 0.79676
c = 55
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=9 Jahre, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann der Bestand = 45 Millionen Einwohner ist, also f(t) = 45:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 7,066 Jahre ist also der Bestand = 45 Millionen Einwohner.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.139(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Konto wird mit 1,3% verzinst.Bestimme die Zeit bis sich der Kontostand verdoppelt hat.
Die prozentuale Zunahme um 1.3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 1.3% dazukommen,
also Bneu
= B +
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.013(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Ein Konto wird mit 8000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 35 Jahren hat sich der der Kontostand verdoppelt. Bestimme den Funktionsterm der Exponentialfunktion, die den Kontostand nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 35 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
