Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 125% - 100% = 25 %
c und a gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 13% abnimmt. Zu Beginn der Beobachtung wurden 12 Millionen dieser Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 4 Jahren? b) Wann erwartet man nur noch 2 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=12 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 13% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 13% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,87 ⋅ B. Somit ist das a=0,87.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=4 Jahre, also f(4):
f(4) = ≈ 6,875.
zu b)
Hier wird gefragt, wann der Bestand = 2 Millionen Insekten ist, also f(t) = 2:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 12,866 Jahre ist also der Bestand = 2 Millionen Insekten.
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 4000 Nutzer. Nach 11 Wochen zählt man bereits 29720,33 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 7 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 6000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=4000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 11 Wochen der Bestand 29720.33 Nutzer ist, also f(11) = 29720.33. Dies setzen wir in unsern bisherigen Funktionterm ein:
= | |: | ||
= | | | ||
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=7 Wochen, also f(7):
f(7) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 6000 Nutzer ist, also f(t) = 6000:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 2,224 Wochen ist also die Anzahl der Nutzer = 6000 Nutzer.
a und ein Funktionswert gegeben
Beispiel:
Ein Staat verliert jedes Jahr 2,2% seiner Bevölkerung. Nach 6 Jahren hat der Staat noch 56,88 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 8 Jahren? b) Wann hat das Land nur noch 45 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 2.2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.2% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 56.88 Millionen Einwohner ist,
also f(6) = 56.88. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.9786 = 56.88
c ⋅ 0.87505 = 56.88 | : 0.87505
c = 65
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Jahre, also f(8):
f(8) =
zu b)
Hier wird gefragt, wann der Bestand = 45 Millionen Einwohner ist, also f(t) = 45:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 16,53 Jahre ist also der Bestand = 45 Millionen Einwohner.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.065(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 20% vermehrt. Wie lange braucht es, bis sich die Nutzerzahl verdoppelt hat?
Die prozentuale Zunahme um 20% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 20% dazukommen,
also Bneu
= B +
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.2(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Bei einem Staat mit 20 Millionen Einwohner geht man davon aus, dass die Einwohnerzahl exponentiell abnimmt. Nach 11,2 Jahren hat sich die Bevölkerung halbiert?Bestimme den Funktionsterm der Exponentialfunktion, die die Einwohnerzahl in Millionen Einwohner nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 11.2 = loga(
|
= | |
|
|
|
= |
|
Das gesuchte a ist somit