Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache (oder auf das -fache), also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 105% - 100% = 5 %
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 8%. Zu Beobachtungsbeginn umfasste die Kultur 23 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 8 Stunden? b) Wann umfasst die Kultur 43 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=23 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 8% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 8% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,08 ⋅ B. Somit ist das a=1,08.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Stunden, also f(8):
f(8) = ≈ 42,571.
zu b)
Hier wird gefragt, wann der Bestand = 43 Millionen Bakterien ist, also f(t) = 43:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 8,13 Stunden ist also der Bestand = 43 Millionen Bakterien.
c und ein Funktionswert gegeben
Beispiel:
Von einem radioaktiven Element sind zu Beobachtungsbeginn 50kg vorhanden. Nach 2 Tagen nach sind nur noch 40,5kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 12 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 40,5kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=50 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 2 Tage der Bestand 40.5 kg ist, also f(2) = 40.5. Dies setzen wir in unsern bisherigen Funktionterm ein:
= | |: | ||
= | | | ||
a1 | = |
|
=
|
a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=12 Tage, also f(12):
f(12) =
zu b)
Hier wird gefragt, wann der Bestand = 40.5 kg ist, also f(t) = 40.5:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 2 Tage ist also der Bestand = 40.5 kg.
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 2%. 7 Stunden nach Beobachtungsbeginn sind es bereits 22,97Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 4 Stunden? b) Wann umfasst die Kultur 23,4 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 7 Stunden der Bestand 22.97 Millionen Bakterien ist,
also f(7) = 22.97. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.027 = 22.97
c ⋅ 1.14869 = 22.97 | : 1.14869
c = 20
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=4 Stunden, also f(4):
f(4) =
zu b)
Hier wird gefragt, wann der Bestand = 23.4 Millionen Bakterien ist, also f(t) = 23.4:
|
= | |: |
|
|
= | |lg(⋅) | |
|
= |
|
|
|
= |
|
|:
|
|
= |
|
|
= |
|
Nach ca. 7,928 Stunden ist also der Bestand = 23.4 Millionen Bakterien.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.106(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 17% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 17% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 17% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.83(
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 3,1 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 3.1 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
= | |
|
|
|
= |
|
Das gesuchte a ist somit