nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

- x 2 = - 9 49

Lösung einblenden
- x 2 = - 9 49 |: ( -1 )
x 2 = 9 49 | 2
x1 = - 9 49 - 3 7
x2 = 9 49 3 7

L={ - 3 7 ; 3 7 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

8 x 2 -7x +4 = ( 7x +7 ) ( x -4 ) +17x +42

Lösung einblenden
8 x 2 -7x +4 = ( 7x +7 ) ( x -4 ) +17x +42
8 x 2 -7x +4 = 7 x 2 -21x -28 +17x +42
8 x 2 -7x +4 = 7 x 2 -4x +14 | -7 x 2 +4x -14

x 2 -3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = 3 2 ± 49 4

x1 = 3 2 - 7 2 = - 4 2 = -2

x2 = 3 2 + 7 2 = 10 2 = 5

L={ -2 ; 5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -8x +8 = 0

Lösung einblenden
2 x 2 -8x +8 = 0 |:2

x 2 -4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 2 ± 0 = 2

L={ 2 }

2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(5|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(2|1).
Es gilt dann ja: y = 1,
also y = a · ( 2 -1 ) · ( 2 -5 ) = -3a =1.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 ( x -1 ) ( x -5 ) .