nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - ( x +5 ) 2
und
g(x)= -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- ( x +5 ) 2 = -4 |: ( -1 )
( x +5 ) 2 = 4 | 2

1. Fall

x +5 = - 4 = -2
x +5 = -2 | -5
x1 = -7

2. Fall

x +5 = 4 = 2
x +5 = 2 | -5
x2 = -3

L={ -7 ; -3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -7 ) = -4

g( -3 ) = -4

Die Schnittpunkte sind also S1( -7 | -4 ) und S2( -3 | -4 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

2 x 2 -8x +5 = ( x -5 ) ( x -8 ) + x -38

Lösung einblenden
2 x 2 -8x +5 = ( x -5 ) ( x -8 ) + x -38
2 x 2 -8x +5 = x 2 -13x +40 + x -38
2 x 2 -8x +5 = x 2 -12x +2 | - x 2 +12x -2

x 2 +4x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

L={ -3 ; -1 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +40x +101 = 0

Lösung einblenden

4 x 2 +40x +101 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -40 ± 40 2 -4 · 4 · 101 24

x1,2 = -40 ± 1600 -1616 8

x1,2 = -40 ± ( -16 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +40x +101 = 0 |: 4

x 2 +10x + 101 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - ( 101 4 ) = 25 - 101 4 = 100 4 - 101 4 = - 1 4

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|1).
Es gilt dann ja: y = 1,
also y = a · ( -3 +4 ) · ( -3 +2 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +4 ) ( x +2 ) .