nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

- x 2 +0,78 = -0,03

Lösung einblenden
- x 2 +0,78 = -0,03 | -0,78
- x 2 = -0,81 |: ( -1 )
x 2 = 0,81 | 2
x1 = - 0,81 = -0,9
x2 = 0,81 = 0,9

L={ -0,9 ; 0,9 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

49 +14x + x 2 = 0

Lösung einblenden

x 2 +14x +49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -14 ± 14 2 -4 · 1 · 49 21

x1,2 = -14 ± 196 -196 2

x1,2 = -14 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 7 2 - 49 = 49 - 49 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -7 ± 0 = -7

L={ -7 }

-7 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +5x +3 = 0

Lösung einblenden

2 x 2 +5x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 2 · 3 22

x1,2 = -5 ± 25 -24 4

x1,2 = -5 ± 1 4

x1 = -5 + 1 4 = -5 +1 4 = -4 4 = -1

x2 = -5 - 1 4 = -5 -1 4 = -6 4 = -1,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +5x +3 = 0 |: 2

x 2 + 5 2 x + 3 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 4 ) 2 - ( 3 2 ) = 25 16 - 3 2 = 25 16 - 24 16 = 1 16

x1,2 = - 5 4 ± 1 16

x1 = - 5 4 - 1 4 = - 6 4 = -1.5

x2 = - 5 4 + 1 4 = - 4 4 = -1

L={ -1,5 ; -1 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-2).
Es gilt dann ja: y = -2,
also y = a · ( -2 +3 ) · ( -2 -2 ) = -4a =-2.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +3 ) ( x -2 ) .