nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

-4 x 2 = -256

Lösung einblenden
-4 x 2 = -256 |: ( -4 )
x 2 = 64 | 2
x1 = - 64 = -8
x2 = 64 = 8

L={ -8 ; 8 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

-2 x 2 +12x -18 = 0

Lösung einblenden
-2 x 2 +12x -18 = 0 |:2

- x 2 +6x -9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -9 ) 2( -1 )

x1,2 = -6 ± 36 -36 -2

x1,2 = -6 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -9 = 0 |: -1

x 2 -6x +9 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 3 ± 0 = 3

L={ 3 }

3 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -15x +18 = 0

Lösung einblenden

2 x 2 -15x +18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · 2 · 18 22

x1,2 = +15 ± 225 -144 4

x1,2 = +15 ± 81 4

x1 = 15 + 81 4 = 15 +9 4 = 24 4 = 6

x2 = 15 - 81 4 = 15 -9 4 = 6 4 = 1,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -15x +18 = 0 |: 2

x 2 - 15 2 x +9 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 4 ) 2 - 9 = 225 16 - 9 = 225 16 - 144 16 = 81 16

x1,2 = 15 4 ± 81 16

x1 = 15 4 - 9 4 = 6 4 = 1.5

x2 = 15 4 + 9 4 = 24 4 = 6

L={ 1,5 ; 6 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -1 ) .