nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x - 13 9 ) 2 = 64 81

Lösung einblenden
( x - 13 9 ) 2 = 64 81 | 2

1. Fall

x - 13 9 = - 64 81 - 8 9
x - 13 9 = - 8 9 | + 13 9
x1 = 5 9

2. Fall

x - 13 9 = 64 81 8 9
x - 13 9 = 8 9 | + 13 9
x2 = 7 3

L={ 5 9 ; 7 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 +6x +9 = 0

Lösung einblenden

x 2 +6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -3 ± 0 = -3

L={ -3 }

-3 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 + x -72 = 0

Lösung einblenden

x 2 + x -72 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -72 ) 21

x1,2 = -1 ± 1 +288 2

x1,2 = -1 ± 289 2

x1 = -1 + 289 2 = -1 +17 2 = 16 2 = 8

x2 = -1 - 289 2 = -1 -17 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -72 ) = 1 4 + 72 = 1 4 + 288 4 = 289 4

x1,2 = - 1 2 ± 289 4

x1 = - 1 2 - 17 2 = - 18 2 = -9

x2 = - 1 2 + 17 2 = 16 2 = 8

L={ -9 ; 8 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(5|0).

Also muss der Funktionsterm y= a · x · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|2).
Es gilt dann ja: y = 2,
also y = a · 1 · ( 1 -5 ) = -4a =2.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 x ( x -5 ) .