nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

-0,4 x 2 +9,6 = -0,4

Lösung einblenden
-0,4 x 2 +9,6 = -0,4 | -9,6
-0,4 x 2 = -10 |: ( -0,4 )
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

4 x 2 +28x +49 = 0

Lösung einblenden

4 x 2 +28x +49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -28 ± 28 2 -4 · 4 · 49 24

x1,2 = -28 ± 784 -784 8

x1,2 = -28 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -28 8 = - 7 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +28x +49 = 0 |: 4

x 2 +7x + 49 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( 49 4 ) = 49 4 - 49 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 7 2 ± 0 = - 7 2

L={ - 7 2 }

- 7 2 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +7x +6 = 0

Lösung einblenden

x 2 +7x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · 6 21

x1,2 = -7 ± 49 -24 2

x1,2 = -7 ± 25 2

x1 = -7 + 25 2 = -7 +5 2 = -2 2 = -1

x2 = -7 - 25 2 = -7 -5 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = - 7 2 ± 25 4

x1 = - 7 2 - 5 2 = - 12 2 = -6

x2 = - 7 2 + 5 2 = - 2 2 = -1

L={ -6 ; -1 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-1).
Es gilt dann ja: y = -1,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +3 ) ( x +1 ) .