nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -7 ) 2 -5
und
g(x)= 4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -7 ) 2 -5 = 4 | +5
( x -7 ) 2 = 9 | 2

1. Fall

x -7 = - 9 = -3
x -7 = -3 | +7
x1 = 4

2. Fall

x -7 = 9 = 3
x -7 = 3 | +7
x2 = 10

L={ 4 ; 10 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = 4

g( 10 ) = 4

Die Schnittpunkte sind also S1( 4 | 4 ) und S2( 10 | 4 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-x +4 = ( -x +1 ) ( x -1 ) -3x +14

Lösung einblenden
-x +4 = ( -x +1 ) ( x -1 ) -3x +14
-x +4 = - x 2 +2x -1 -3x +14
-x +4 = - x 2 - x +13 | -4
-x = - x 2 - x +9 | + x 2 + x
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +2x -60 = 0

Lösung einblenden
2 x 2 +2x -60 = 0 |:2

x 2 + x -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -30 ) 21

x1,2 = -1 ± 1 +120 2

x1,2 = -1 ± 121 2

x1 = -1 + 121 2 = -1 +11 2 = 10 2 = 5

x2 = -1 - 121 2 = -1 -11 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -30 ) = 1 4 + 30 = 1 4 + 120 4 = 121 4

x1,2 = - 1 2 ± 121 4

x1 = - 1 2 - 11 2 = - 12 2 = -6

x2 = - 1 2 + 11 2 = 10 2 = 5

L={ -6 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -1 ) .