nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 ( x +3 ) 2 +14
und
g(x)= -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 ( x +3 ) 2 +14 = -4 | -14
-2 ( x +3 ) 2 = -18 |: ( -2 )
( x +3 ) 2 = 9 | 2

1. Fall

x +3 = - 9 = -3
x +3 = -3 | -3
x1 = -6

2. Fall

x +3 = 9 = 3
x +3 = 3 | -3
x2 = 0

L={ -6 ; 0}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -6 ) = -4

g(0) = -4

Die Schnittpunkte sind also S1( -6 | -4 ) und S2(0| -4 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

10 x 2 -4x -6 = ( 9x -5 ) ( x -9 ) +76x -56

Lösung einblenden
10 x 2 -4x -6 = ( 9x -5 ) ( x -9 ) +76x -56
10 x 2 -4x -6 = 9 x 2 -86x +45 +76x -56
10 x 2 -4x -6 = 9 x 2 -10x -11 | -9 x 2 +10x +11

x 2 +6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 5 21

x1,2 = -6 ± 36 -20 2

x1,2 = -6 ± 16 2

x1 = -6 + 16 2 = -6 +4 2 = -2 2 = -1

x2 = -6 - 16 2 = -6 -4 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 5 = 9 - 5 = 4

x1,2 = -3 ± 4

x1 = -3 - 2 = -5

x2 = -3 + 2 = -1

L={ -5 ; -1 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 - x -20 = 0

Lösung einblenden

x 2 - x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

L={ -4 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|1).
Es gilt dann ja: y = 1,
also y = a · ( -1 +2 ) · ( -1 -1 ) = -2a =1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x +2 ) ( x -1 ) .