nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 49

Lösung einblenden
x 2 = 49 | 2
x1 = - 49 = -7
x2 = 49 = 7

L={ -7 ; 7 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 -15 +2x = 0

Lösung einblenden

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

L={ -5 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

25 x 2 -70x +49 = 0

Lösung einblenden

25 x 2 -70x +49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +70 ± ( -70 ) 2 -4 · 25 · 49 225

x1,2 = +70 ± 4900 -4900 50

x1,2 = +70 ± 0 50

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 70 50 = 7 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "25 " teilen:

25 x 2 -70x +49 = 0 |: 25

x 2 - 14 5 x + 49 25 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 5 ) 2 - ( 49 25 ) = 49 25 - 49 25 = 0 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 7 5 ± 0 = 7 5

L={ 7 5 }

7 5 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(2|1).
Es gilt dann ja: y = 1,
also y = a · ( 2 -1 ) · ( 2 -3 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x -1 ) ( x -3 ) .