nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -4 ) 2 +2
und
g(x)= 6 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -4 ) 2 +2 = 6 | -2
( x -4 ) 2 = 4 | 2

1. Fall

x -4 = - 4 = -2
x -4 = -2 | +4
x1 = 2

2. Fall

x -4 = 4 = 2
x -4 = 2 | +4
x2 = 6

L={ 2 ; 6 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = 6

g( 6 ) = 6

Die Schnittpunkte sind also S1( 2 | 6 ) und S2( 6 | 6 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

7 x 2 +7x -8 = ( 6x -3 ) ( x +2 ) +4x -7

Lösung einblenden
7 x 2 +7x -8 = ( 6x -3 ) ( x +2 ) +4x -7
7 x 2 +7x -8 = 6 x 2 +9x -6 +4x -7
7 x 2 +7x -8 = 6 x 2 +13x -13 | -6 x 2 -13x +13

x 2 -6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

L={ 1 ; 5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -15x -50 = 0

Lösung einblenden

2 x 2 -15x -50 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · 2 · ( -50 ) 22

x1,2 = +15 ± 225 +400 4

x1,2 = +15 ± 625 4

x1 = 15 + 625 4 = 15 +25 4 = 40 4 = 10

x2 = 15 - 625 4 = 15 -25 4 = -10 4 = -2,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -15x -50 = 0 |: 2

x 2 - 15 2 x -25 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 4 ) 2 - ( -25 ) = 225 16 + 25 = 225 16 + 400 16 = 625 16

x1,2 = 15 4 ± 625 16

x1 = 15 4 - 25 4 = - 10 4 = -2.5

x2 = 15 4 + 25 4 = 40 4 = 10

L={ -2,5 ; 10 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-4|2).
Es gilt dann ja: y = 2,
also y = a · ( -4 +3 ) · ( -4 -4 ) = 8a =2.

Hieraus ergibt sich a= 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 4 ( x +3 ) ( x -4 ) .