nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

( x +6 ) 2 -4 = 0

Lösung einblenden
( x +6 ) 2 -4 = 0 | +4
( x +6 ) 2 = 4 | 2

1. Fall

x +6 = - 4 = -2
x +6 = -2 | -6
x1 = -8

2. Fall

x +6 = 4 = 2
x +6 = 2 | -6
x2 = -4

L={ -8 ; -4 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 - 7 2 x - 49 2 = 0

Lösung einblenden
x 2 - 7 2 x - 49 2 = 0 |⋅ 2
2( x 2 - 7 2 x - 49 2 ) = 0

2 x 2 -7x -49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 2 · ( -49 ) 22

x1,2 = +7 ± 49 +392 4

x1,2 = +7 ± 441 4

x1 = 7 + 441 4 = 7 +21 4 = 28 4 = 7

x2 = 7 - 441 4 = 7 -21 4 = -14 4 = -3,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -7x -49 = 0 |: 2

x 2 - 7 2 x - 49 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 4 ) 2 - ( - 49 2 ) = 49 16 + 49 2 = 49 16 + 392 16 = 441 16

x1,2 = 7 4 ± 441 16

x1 = 7 4 - 21 4 = - 14 4 = -3.5

x2 = 7 4 + 21 4 = 28 4 = 7

L={ -3,5 ; 7 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

16 x 2 +24x +9 = 0

Lösung einblenden

16 x 2 +24x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -24 ± 24 2 -4 · 16 · 9 216

x1,2 = -24 ± 576 -576 32

x1,2 = -24 ± 0 32

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -24 32 = - 3 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "16 " teilen:

16 x 2 +24x +9 = 0 |: 16

x 2 + 3 2 x + 9 16 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 4 ) 2 - ( 9 16 ) = 9 16 - 9 16 = 0 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 3 4 ± 0 = - 3 4

L={ - 3 4 }

- 3 4 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-1).
Es gilt dann ja: y = -1,
also y = a · ( -1 · ( -1 -2 ) ) = 3a =-1.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 x ( x -2 ) .