nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

5 x 2 = 0

Lösung einblenden
5 x 2 = 0 |:5
x 2 = 0 | 2
x = 0

L={0}

0 ist 2-fache Lösung!

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

5 x 2 +5x -7 = ( 4x -2 ) ( x -5 ) +22x -23

Lösung einblenden
5 x 2 +5x -7 = ( 4x -2 ) ( x -5 ) +22x -23
5 x 2 +5x -7 = 4 x 2 -22x +10 +22x -23
5 x 2 +5x -7 = 4 x 2 -13 | -4 x 2 +13

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

L={ -3 ; -2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -44x +40 = 0

Lösung einblenden
4 x 2 -44x +40 = 0 |:4

x 2 -11x +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +11 ± ( -11 ) 2 -4 · 1 · 10 21

x1,2 = +11 ± 121 -40 2

x1,2 = +11 ± 81 2

x1 = 11 + 81 2 = 11 +9 2 = 20 2 = 10

x2 = 11 - 81 2 = 11 -9 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 11 2 ) 2 - 10 = 121 4 - 10 = 121 4 - 40 4 = 81 4

x1,2 = 11 2 ± 81 4

x1 = 11 2 - 9 2 = 2 2 = 1

x2 = 11 2 + 9 2 = 20 2 = 10

L={ 1 ; 10 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|2).
Es gilt dann ja: y = 2,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +1 ) ( x -1 ) .