nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x +3 ) 2 -19
und
g(x)= -10 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x +3 ) 2 -19 = -10 | +19
( x +3 ) 2 = 9 | 2

1. Fall

x +3 = - 9 = -3
x +3 = -3 | -3
x1 = -6

2. Fall

x +3 = 9 = 3
x +3 = 3 | -3
x2 = 0

L={ -6 ; 0}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -6 ) = -10

g(0) = -10

Die Schnittpunkte sind also S1( -6 | -10 ) und S2(0| -10 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

- x 2 +3x +3 = ( -2x -3 ) ( x -2 ) -5x -15

Lösung einblenden
- x 2 +3x +3 = ( -2x -3 ) ( x -2 ) -5x -15
- x 2 +3x +3 = -2 x 2 + x +6 -5x -15
- x 2 +3x +3 = -2 x 2 -4x -9 | +2 x 2 +4x +9

x 2 +7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · 12 21

x1,2 = -7 ± 49 -48 2

x1,2 = -7 ± 1 2

x1 = -7 + 1 2 = -7 +1 2 = -6 2 = -3

x2 = -7 - 1 2 = -7 -1 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

L={ -4 ; -3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +4x +1 = 0

Lösung einblenden

4 x 2 +4x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 4 · 1 24

x1,2 = -4 ± 16 -16 8

x1,2 = -4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 8 = - 1 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +4x +1 = 0 |: 4

x 2 + x + 1 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( 1 4 ) = 1 4 - 1 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 1 2 ± 0 = - 1 2

L={ - 1 2 }

- 1 2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-4|2).
Es gilt dann ja: y = 2,
also y = a · ( -4 +3 ) · ( -4 -2 ) = 6a =2.

Hieraus ergibt sich a= 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 3 ( x +3 ) ( x -2 ) .