nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 ( x -6 ) 2 +9
und
g(x)= -7 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 ( x -6 ) 2 +9 = -7 | -9
-4 ( x -6 ) 2 = -16 |: ( -4 )
( x -6 ) 2 = 4 | 2

1. Fall

x -6 = - 4 = -2
x -6 = -2 | +6
x1 = 4

2. Fall

x -6 = 4 = 2
x -6 = 2 | +6
x2 = 8

L={ 4 ; 8 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = -7

g( 8 ) = -7

Die Schnittpunkte sind also S1( 4 | -7 ) und S2( 8 | -7 ).

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

81 +4 x 2 -36x = 0

Lösung einblenden

4 x 2 -36x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +36 ± ( -36 ) 2 -4 · 4 · 81 24

x1,2 = +36 ± 1296 -1296 8

x1,2 = +36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 36 8 = 9 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -36x +81 = 0 |: 4

x 2 -9x + 81 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - ( 81 4 ) = 81 4 - 81 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 9 2 ± 0 = 9 2

L={ 9 2 }

9 2 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -8x +15 = 0

Lösung einblenden

x 2 -8x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 15 21

x1,2 = +8 ± 64 -60 2

x1,2 = +8 ± 4 2

x1 = 8 + 4 2 = 8 +2 2 = 10 2 = 5

x2 = 8 - 4 2 = 8 -2 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 15 = 16 - 15 = 1

x1,2 = 4 ± 1

x1 = 4 - 1 = 3

x2 = 4 + 1 = 5

L={ 3 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +3 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|1).
Es gilt dann ja: y = 1,
also y = a · ( -2 +3 ) · ( -2 ) = -2a =1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x +3 ) x .