nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x +4,8 ) 2 = 0,01

Lösung einblenden
( x +4,8 ) 2 = 0,01 | 2

1. Fall

x +4,8 = - 0,01 = -0,1
x +4,8 = -0,1 | -4,8
x1 = -4,9

2. Fall

x +4,8 = 0,01 = 0,1
x +4,8 = 0,1 | -4,8
x2 = -4,7

L={ -4,9 ; -4,7 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2 x 2 -36 - x = 0

Lösung einblenden

2 x 2 - x -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -36 ) 22

x1,2 = +1 ± 1 +288 4

x1,2 = +1 ± 289 4

x1 = 1 + 289 4 = 1 +17 4 = 18 4 = 4,5

x2 = 1 - 289 4 = 1 -17 4 = -16 4 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 - x -36 = 0 |: 2

x 2 - 1 2 x -18 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( -18 ) = 1 16 + 18 = 1 16 + 288 16 = 289 16

x1,2 = 1 4 ± 289 16

x1 = 1 4 - 17 4 = - 16 4 = -4

x2 = 1 4 + 17 4 = 18 4 = 4.5

L={ -4 ; 4,5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -12x +36 = 0

Lösung einblenden

x 2 -12x +36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 36 21

x1,2 = +12 ± 144 -144 2

x1,2 = +12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 36 = 36 - 36 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 6 ± 0 = 6

L={ 6 }

6 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -1 ) .