nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

2 ( x -1 ) 2 -32 = 0

Lösung einblenden
2 ( x -1 ) 2 -32 = 0 | +32
2 ( x -1 ) 2 = 32 |:2
( x -1 ) 2 = 16 | 2

1. Fall

x -1 = - 16 = -4
x -1 = -4 | +1
x1 = -3

2. Fall

x -1 = 16 = 4
x -1 = 4 | +1
x2 = 5

L={ -3 ; 5 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

6x -6 = ( -x +6 ) ( x +5 ) +8x -36

Lösung einblenden
6x -6 = ( -x +6 ) ( x +5 ) +8x -36
6x -6 = - x 2 + x +30 +8x -36
6x -6 = - x 2 +9x -6 | +6
6x = - x 2 +9x | - ( - x 2 +9x )
x 2 +6x -9x = 0
x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -10x +25 = 0

Lösung einblenden

x 2 -10x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 25 21

x1,2 = +10 ± 100 -100 2

x1,2 = +10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 25 = 25 - 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 5 ± 0 = 5

L={ 5 }

5 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|2).
Es gilt dann ja: y = 2,
also y = a · ( -2 +3 ) · ( -2 -2 ) = -4a =2.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x +3 ) ( x -2 ) .