nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 0

Lösung einblenden
x 2 = 0 | 2
x = 0

L={0}

0 ist 2-fache Lösung!

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

7 x 2 +8x +5 = ( 6x +8 ) ( x +4 ) -23x -25

Lösung einblenden
7 x 2 +8x +5 = ( 6x +8 ) ( x +4 ) -23x -25
7 x 2 +8x +5 = 6 x 2 +32x +32 -23x -25
7 x 2 +8x +5 = 6 x 2 +9x +7 | -6 x 2 -9x -7

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

L={ -1 ; 2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

5 x 2 -28x +15 = 0

Lösung einblenden

5 x 2 -28x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +28 ± ( -28 ) 2 -4 · 5 · 15 25

x1,2 = +28 ± 784 -300 10

x1,2 = +28 ± 484 10

x1 = 28 + 484 10 = 28 +22 10 = 50 10 = 5

x2 = 28 - 484 10 = 28 -22 10 = 6 10 = 0,6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -28x +15 = 0 |: 5

x 2 - 28 5 x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 14 5 ) 2 - 3 = 196 25 - 3 = 196 25 - 75 25 = 121 25

x1,2 = 14 5 ± 121 25

x1 = 14 5 - 11 5 = 3 5 = 0.6

x2 = 14 5 + 11 5 = 25 5 = 5

L={ 0,6 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|1).
Es gilt dann ja: y = 1,
also y = a · ( -2 +3 ) · ( -2 -2 ) = -4a =1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x +3 ) ( x -2 ) .