nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 1600

Lösung einblenden
x 2 = 1600 | 2
x1 = - 1600 = -40
x2 = 1600 = 40

L={ -40 ; 40 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 -4x -12 = 0

Lösung einblenden

x 2 -4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +4 ± 16 +48 2

x1,2 = +4 ± 64 2

x1 = 4 + 64 2 = 4 +8 2 = 12 2 = 6

x2 = 4 - 64 2 = 4 -8 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -12 ) = 4+ 12 = 16

x1,2 = 2 ± 16

x1 = 2 - 4 = -2

x2 = 2 + 4 = 6

L={ -2 ; 6 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -5x -63 = 0

Lösung einblenden

2 x 2 -5x -63 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 2 · ( -63 ) 22

x1,2 = +5 ± 25 +504 4

x1,2 = +5 ± 529 4

x1 = 5 + 529 4 = 5 +23 4 = 28 4 = 7

x2 = 5 - 529 4 = 5 -23 4 = -18 4 = -4,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -5x -63 = 0 |: 2

x 2 - 5 2 x - 63 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 4 ) 2 - ( - 63 2 ) = 25 16 + 63 2 = 25 16 + 504 16 = 529 16

x1,2 = 5 4 ± 529 16

x1 = 5 4 - 23 4 = - 18 4 = -4.5

x2 = 5 4 + 23 4 = 28 4 = 7

L={ -4,5 ; 7 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|2).
Es gilt dann ja: y = 2,
also y = a · ( -1 +2 ) · ( -1 -1 ) = -2a =2.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +2 ) ( x -1 ) .