nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x + 3 7 ) 2 = 9 49

Lösung einblenden
( x + 3 7 ) 2 = 9 49 | 2

1. Fall

x + 3 7 = - 9 49 - 3 7
x + 3 7 = - 3 7 | - 3 7
x1 = - 6 7

2. Fall

x + 3 7 = 9 49 3 7
x + 3 7 = 3 7 | - 3 7
x2 = 0

L={ - 6 7 ; 0}

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

- x 2 +2x -4 = ( -2x +2 ) ( x +1 ) +7x -10

Lösung einblenden
- x 2 +2x -4 = ( -2x +2 ) ( x +1 ) +7x -10
- x 2 +2x -4 = -2 x 2 +2 +7x -10
- x 2 +2x -4 = -2 x 2 +7x -8 | +2 x 2 -7x +8

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

L={ 1 ; 4 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -7x +6 = 0

Lösung einblenden

x 2 -7x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 6 21

x1,2 = +7 ± 49 -24 2

x1,2 = +7 ± 25 2

x1 = 7 + 25 2 = 7 +5 2 = 12 2 = 6

x2 = 7 - 25 2 = 7 -5 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = 7 2 ± 25 4

x1 = 7 2 - 5 2 = 2 2 = 1

x2 = 7 2 + 5 2 = 12 2 = 6

L={ 1 ; 6 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(2|-2).
Es gilt dann ja: y = -2,
also y = a · ( 2 -1 ) · ( 2 -4 ) = -2a =-2.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -4 ) .