nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

0,4 x 2 +200 = 200

Lösung einblenden
0,4 x 2 +200 = 200 | -200
0,4 x 2 = 0 |:0,4
x 2 = 0 0,4 | 2
x = 0

L={0}

0 ist 2-fache Lösung!

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +42x -147 = 0

Lösung einblenden
-3 x 2 +42x -147 = 0 |:3

- x 2 +14x -49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -14 ± 14 2 -4 · ( -1 ) · ( -49 ) 2( -1 )

x1,2 = -14 ± 196 -196 -2

x1,2 = -14 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +14x -49 = 0 |: -1

x 2 -14x +49 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 49 = 49 - 49 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 7 ± 0 = 7

L={ 7 }

7 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -11x +9 = 0

Lösung einblenden

2 x 2 -11x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +11 ± ( -11 ) 2 -4 · 2 · 9 22

x1,2 = +11 ± 121 -72 4

x1,2 = +11 ± 49 4

x1 = 11 + 49 4 = 11 +7 4 = 18 4 = 4,5

x2 = 11 - 49 4 = 11 -7 4 = 4 4 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -11x +9 = 0 |: 2

x 2 - 11 2 x + 9 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 11 4 ) 2 - ( 9 2 ) = 121 16 - 9 2 = 121 16 - 72 16 = 49 16

x1,2 = 11 4 ± 49 16

x1 = 11 4 - 7 4 = 4 4 = 1

x2 = 11 4 + 7 4 = 18 4 = 4.5

L={ 1 ; 4,5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 -1 ) · ( 0 -2 ) = 2a =-1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x -1 ) ( x -2 ) .