nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

- x 2 = -9

Lösung einblenden
- x 2 = -9 |: ( -1 )
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

90 -28x +2 x 2 = 0

Lösung einblenden
2 x 2 -28x +90 = 0 |:2

x 2 -14x +45 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +14 ± ( -14 ) 2 -4 · 1 · 45 21

x1,2 = +14 ± 196 -180 2

x1,2 = +14 ± 16 2

x1 = 14 + 16 2 = 14 +4 2 = 18 2 = 9

x2 = 14 - 16 2 = 14 -4 2 = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 45 = 49 - 45 = 4

x1,2 = 7 ± 4

x1 = 7 - 2 = 5

x2 = 7 + 2 = 9

L={ 5 ; 9 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

5 x 2 -39x +54 = 0

Lösung einblenden

5 x 2 -39x +54 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +39 ± ( -39 ) 2 -4 · 5 · 54 25

x1,2 = +39 ± 1521 -1080 10

x1,2 = +39 ± 441 10

x1 = 39 + 441 10 = 39 +21 10 = 60 10 = 6

x2 = 39 - 441 10 = 39 -21 10 = 18 10 = 1,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -39x +54 = 0 |: 5

x 2 - 39 5 x + 54 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 39 10 ) 2 - ( 54 5 ) = 1521 100 - 54 5 = 1521 100 - 1080 100 = 441 100

x1,2 = 39 10 ± 441 100

x1 = 39 10 - 21 10 = 18 10 = 1.8

x2 = 39 10 + 21 10 = 60 10 = 6

L={ 1,8 ; 6 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-2).
Es gilt dann ja: y = -2,
also y = a · ( 0 +1 ) · ( 0 -2 ) = -2a =-2.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -2 ) .