nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -2 ) 2
und
g(x)= 4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -2 ) 2 = 4 | 2

1. Fall

x -2 = - 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 4 = 2
x -2 = 2 | +2
x2 = 4

L={0; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g(0) = 4

g( 4 ) = 4

Die Schnittpunkte sind also S1(0| 4 ) und S2( 4 | 4 ).

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

4 -8x +4 x 2 = 0

Lösung einblenden
4 x 2 -8x +4 = 0 |:4

x 2 -2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

L={ 1 }

1 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -12x +37 = 0

Lösung einblenden

x 2 -12x +37 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 37 21

x1,2 = +12 ± 144 -148 2

x1,2 = +12 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 37 = 36 - 37 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-4|-1).
Es gilt dann ja: y = -1,
also y = a · ( -4 +3 ) · ( -4 +2 ) = 2a =-1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x +3 ) ( x +2 ) .