nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -2 ) 2 -24
und
g(x)= -20 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -2 ) 2 -24 = -20 | +24
( x -2 ) 2 = 4 | 2

1. Fall

x -2 = - 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 4 = 2
x -2 = 2 | +2
x2 = 4

L={0; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g(0) = -20

g( 4 ) = -20

Die Schnittpunkte sind also S1(0| -20 ) und S2( 4 | -20 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-5x -7 = ( -x +6 ) ( x +5 ) -9x -37

Lösung einblenden
-5x -7 = ( -x +6 ) ( x +5 ) -9x -37
-5x -7 = - x 2 + x +30 -9x -37
-5x -7 = - x 2 -8x -7 | +7
-5x = - x 2 -8x | - ( - x 2 -8x )
x 2 -5x +8x = 0
x 2 +3x = 0
x ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +3 = 0 | -3
x2 = -3

L={ -3 ; 0}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -12x -14 = 0

Lösung einblenden
2 x 2 -12x -14 = 0 |:2

x 2 -6x -7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · ( -7 ) 21

x1,2 = +6 ± 36 +28 2

x1,2 = +6 ± 64 2

x1 = 6 + 64 2 = 6 +8 2 = 14 2 = 7

x2 = 6 - 64 2 = 6 -8 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -7 ) = 9+ 7 = 16

x1,2 = 3 ± 16

x1 = 3 - 4 = -1

x2 = 3 + 4 = 7

L={ -1 ; 7 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-2).
Es gilt dann ja: y = -2,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +3 ) ( x +1 ) .