nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -7 ) 2 -25
und
g(x)= -21 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -7 ) 2 -25 = -21 | +25
( x -7 ) 2 = 4 | 2

1. Fall

x -7 = - 4 = -2
x -7 = -2 | +7
x1 = 5

2. Fall

x -7 = 4 = 2
x -7 = 2 | +7
x2 = 9

L={ 5 ; 9 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 5 ) = -21

g( 9 ) = -21

Die Schnittpunkte sind also S1( 5 | -21 ) und S2( 9 | -21 ).

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-18x + x 2 = -81

Lösung einblenden
x 2 -18x = -81 | +81

x 2 -18x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +18 ± ( -18 ) 2 -4 · 1 · 81 21

x1,2 = +18 ± 324 -324 2

x1,2 = +18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 18 2 = 9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -9 ) 2 - 81 = 81 - 81 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 9 ± 0 = 9

L={ 9 }

9 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

5 x 2 +24x -36 = 0

Lösung einblenden

5 x 2 +24x -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -24 ± 24 2 -4 · 5 · ( -36 ) 25

x1,2 = -24 ± 576 +720 10

x1,2 = -24 ± 1296 10

x1 = -24 + 1296 10 = -24 +36 10 = 12 10 = 1,2

x2 = -24 - 1296 10 = -24 -36 10 = -60 10 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +24x -36 = 0 |: 5

x 2 + 24 5 x - 36 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 12 5 ) 2 - ( - 36 5 ) = 144 25 + 36 5 = 144 25 + 180 25 = 324 25

x1,2 = - 12 5 ± 324 25

x1 = - 12 5 - 18 5 = - 30 5 = -6

x2 = - 12 5 + 18 5 = 6 5 = 1.2

L={ -6 ; 1,2 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|2).
Es gilt dann ja: y = 2,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +1 ) ( x -1 ) .