nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x + 3 2 ) 2 = 1 100

Lösung einblenden
( x + 3 2 ) 2 = 1 100 | 2

1. Fall

x + 3 2 = - 1 100 = - 1 10
x + 3 2 = - 1 10 | - 3 2
x1 = - 8 5 = -1.6

2. Fall

x + 3 2 = 1 100 = 1 10
x + 3 2 = 1 10 | - 3 2
x2 = - 7 5 = -1.4

L={ - 8 5 ; - 7 5 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 -6x -16 = 0

Lösung einblenden

x 2 -6x -16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · ( -16 ) 21

x1,2 = +6 ± 36 +64 2

x1,2 = +6 ± 100 2

x1 = 6 + 100 2 = 6 +10 2 = 16 2 = 8

x2 = 6 - 100 2 = 6 -10 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -16 ) = 9+ 16 = 25

x1,2 = 3 ± 25

x1 = 3 - 5 = -2

x2 = 3 + 5 = 8

L={ -2 ; 8 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -24x +54 = 0

Lösung einblenden
2 x 2 -24x +54 = 0 |:2

x 2 -12x +27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 27 21

x1,2 = +12 ± 144 -108 2

x1,2 = +12 ± 36 2

x1 = 12 + 36 2 = 12 +6 2 = 18 2 = 9

x2 = 12 - 36 2 = 12 -6 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 27 = 36 - 27 = 9

x1,2 = 6 ± 9

x1 = 6 - 3 = 3

x2 = 6 + 3 = 9

L={ 3 ; 9 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|1).
Es gilt dann ja: y = 1,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +3 ) ( x +1 ) .