nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 4 16

Lösung einblenden
x 2 = 4 16
x 2 = 1 4 | 2
x1 = - 1 4 = - 1 2
x2 = 1 4 = 1 2

L={ - 1 2 ; 1 2 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-9x -7 = ( -x +6 ) ( x +8 ) -9x -52

Lösung einblenden
-9x -7 = ( -x +6 ) ( x +8 ) -9x -52
-9x -7 = - x 2 -2x +48 -9x -52
-9x -7 = - x 2 -11x -4 | + x 2 +11x +4

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +12x +9 = 0

Lösung einblenden

4 x 2 +12x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -12 ± 12 2 -4 · 4 · 9 24

x1,2 = -12 ± 144 -144 8

x1,2 = -12 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -12 8 = - 3 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +12x +9 = 0 |: 4

x 2 +3x + 9 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( 9 4 ) = 9 4 - 9 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 3 2 ± 0 = - 3 2

L={ - 3 2 }

- 3 2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +2 ) · ( -3 -3 ) = 6a =-2.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 ( x +2 ) ( x -3 ) .