nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

-4 x 2 = -100

Lösung einblenden
-4 x 2 = -100 |: ( -4 )
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

3 x 2 +18x -81 = 0

Lösung einblenden
3 x 2 +18x -81 = 0 |:3

x 2 +6x -27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · ( -27 ) 21

x1,2 = -6 ± 36 +108 2

x1,2 = -6 ± 144 2

x1 = -6 + 144 2 = -6 +12 2 = 6 2 = 3

x2 = -6 - 144 2 = -6 -12 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - ( -27 ) = 9+ 27 = 36

x1,2 = -3 ± 36

x1 = -3 - 6 = -9

x2 = -3 + 6 = 3

L={ -9 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -28x +50 = 0

Lösung einblenden
4 x 2 -28x +50 = 0 |:2

2 x 2 -14x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +14 ± ( -14 ) 2 -4 · 2 · 25 22

x1,2 = +14 ± 196 -200 4

x1,2 = +14 ± ( -4 ) 4

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -14x +25 = 0 |: 2

x 2 -7x + 25 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - ( 25 2 ) = 49 4 - 25 2 = 49 4 - 50 4 = - 1 4

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-1).
Es gilt dann ja: y = -1,
also y = a · ( -2 +1 ) · ( -2 -1 ) = 3a =-1.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 ( x +1 ) ( x -1 ) .