nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 25 49

Lösung einblenden
x 2 = 25 49 | 2
x1 = - 25 49 - 5 7
x2 = 25 49 5 7

L={ - 5 7 ; 5 7 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

- x 2 -14x -49 = 0

Lösung einblenden

- x 2 -14x -49 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +14 ± ( -14 ) 2 -4 · ( -1 ) · ( -49 ) 2( -1 )

x1,2 = +14 ± 196 -196 -2

x1,2 = +14 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 14 -2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -14x -49 = 0 |: -1

x 2 +14x +49 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 7 2 - 49 = 49 - 49 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -7 ± 0 = -7

L={ -7 }

-7 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -3x -54 = 0

Lösung einblenden

x 2 -3x -54 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -54 ) 21

x1,2 = +3 ± 9 +216 2

x1,2 = +3 ± 225 2

x1 = 3 + 225 2 = 3 +15 2 = 18 2 = 9

x2 = 3 - 225 2 = 3 -15 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -54 ) = 9 4 + 54 = 9 4 + 216 4 = 225 4

x1,2 = 3 2 ± 225 4

x1 = 3 2 - 15 2 = - 12 2 = -6

x2 = 3 2 + 15 2 = 18 2 = 9

L={ -6 ; 9 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-1).
Es gilt dann ja: y = -1,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +3 ) ( x +1 ) .