nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

-0,1 x 2 = -0,9

Lösung einblenden
-0,1 x 2 = -0,9 |: ( -0,1 )
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

12x +2 x 2 = 54

Lösung einblenden
2 x 2 +12x = 54 | -54
2 x 2 +12x -54 = 0 |:2

x 2 +6x -27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · ( -27 ) 21

x1,2 = -6 ± 36 +108 2

x1,2 = -6 ± 144 2

x1 = -6 + 144 2 = -6 +12 2 = 6 2 = 3

x2 = -6 - 144 2 = -6 -12 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - ( -27 ) = 9+ 27 = 36

x1,2 = -3 ± 36

x1 = -3 - 6 = -9

x2 = -3 + 6 = 3

L={ -9 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -15x +50 = 0

Lösung einblenden

x 2 -15x +50 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · 1 · 50 21

x1,2 = +15 ± 225 -200 2

x1,2 = +15 ± 25 2

x1 = 15 + 25 2 = 15 +5 2 = 20 2 = 10

x2 = 15 - 25 2 = 15 -5 2 = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 2 ) 2 - 50 = 225 4 - 50 = 225 4 - 200 4 = 25 4

x1,2 = 15 2 ± 25 4

x1 = 15 2 - 5 2 = 10 2 = 5

x2 = 15 2 + 5 2 = 20 2 = 10

L={ 5 ; 10 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(5|0).

Also muss der Funktionsterm y= a · x · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|-1).
Es gilt dann ja: y = -1,
also y = a · 1 · ( 1 -5 ) = -4a =-1.

Hieraus ergibt sich a= 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 4 x ( x -5 ) .