nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

-0,2 x 2 +500 = -1120

Lösung einblenden
-0,2 x 2 +500 = -1120 | -500
-0,2 x 2 = -1620 |: ( -0,2 )
x 2 = 8100 | 2
x1 = - 8100 = -90
x2 = 8100 = 90

L={ -90 ; 90 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

56 +22x +2 x 2 = 0

Lösung einblenden
2 x 2 +22x +56 = 0 |:2

x 2 +11x +28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -11 ± 11 2 -4 · 1 · 28 21

x1,2 = -11 ± 121 -112 2

x1,2 = -11 ± 9 2

x1 = -11 + 9 2 = -11 +3 2 = -8 2 = -4

x2 = -11 - 9 2 = -11 -3 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 11 2 ) 2 - 28 = 121 4 - 28 = 121 4 - 112 4 = 9 4

x1,2 = - 11 2 ± 9 4

x1 = - 11 2 - 3 2 = - 14 2 = -7

x2 = - 11 2 + 3 2 = - 8 2 = -4

L={ -7 ; -4 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +2x -40 = 0

Lösung einblenden
2 x 2 +2x -40 = 0 |:2

x 2 + x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -20 ) 21

x1,2 = -1 ± 1 +80 2

x1,2 = -1 ± 81 2

x1 = -1 + 81 2 = -1 +9 2 = 8 2 = 4

x2 = -1 - 81 2 = -1 -9 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = - 1 2 ± 81 4

x1 = - 1 2 - 9 2 = - 10 2 = -5

x2 = - 1 2 + 9 2 = 8 2 = 4

L={ -5 ; 4 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +2 ) · ( -3 -3 ) = 6a =-2.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 ( x +2 ) ( x -3 ) .