nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

-4 ( x -2 ) 2 +16 = 0

Lösung einblenden
-4 ( x -2 ) 2 +16 = 0 | -16
-4 ( x -2 ) 2 = -16 |: ( -4 )
( x -2 ) 2 = 4 | 2

1. Fall

x -2 = - 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 4 = 2
x -2 = 2 | +2
x2 = 4

L={0; 4 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

9 x 2 +4x -7 = ( 8x -3 ) ( x -7 ) +65x -20

Lösung einblenden
9 x 2 +4x -7 = ( 8x -3 ) ( x -7 ) +65x -20
9 x 2 +4x -7 = 8 x 2 -59x +21 +65x -20
9 x 2 +4x -7 = 8 x 2 +6x +1 | -8 x 2 -6x -1

x 2 -2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

L={ -2 ; 4 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

16 x 2 +32x +16 = 0

Lösung einblenden
16 x 2 +32x +16 = 0 |:16

x 2 +2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -1 ± 0 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-2).
Es gilt dann ja: y = -2,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +1 ) ( x -1 ) .