nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

2 x 2 = 162

Lösung einblenden
2 x 2 = 162 |:2
x 2 = 81 | 2
x1 = - 81 = -9
x2 = 81 = 9

L={ -9 ; 9 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

17 -16x = -4 x 2

Lösung einblenden
-16x +17 = -4 x 2 | +4 x 2

4 x 2 -16x +17 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +16 ± ( -16 ) 2 -4 · 4 · 17 24

x1,2 = +16 ± 256 -272 8

x1,2 = +16 ± ( -16 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -16x +17 = 0 |: 4

x 2 -4x + 17 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( 17 4 ) = 4 - 17 4 = 16 4 - 17 4 = - 1 4

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

25 x 2 -100x +100 = 0

Lösung einblenden
25 x 2 -100x +100 = 0 |:25

x 2 -4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 2 ± 0 = 2

L={ 2 }

2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-2).
Es gilt dann ja: y = -2,
also y = a · ( -1 +2 ) · ( -1 -3 ) = -4a =-2.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +2 ) ( x -3 ) .