nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 3 x 3 - 3 4 x 2 und vereinfache:

Lösung einblenden

f(x)= 1 3 x 3 - 3 4 x 2

f'(x)= x 2 - 3 2 x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 3 und gib die Steigung von f an der Stelle x=1 an:

Lösung einblenden

f(x)= - x 3

=>f'(x)= -3 x 2

f'(1) = -3 1 2 = -31 = -3

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - 2 3 x 2 und vereinfache:

Lösung einblenden

f(x)= - 2 3 x 2

= - 2 3 x -2

=> f'(x) = 4 3 x -3

f'(x)= 4 3 x 3

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x und vereinfache:

Lösung einblenden

f(x)= -5 x

= -5 x 1 2

=> f'(x) = - 5 2 x - 1 2

f'(x)= - 5 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= - sin( x ) +4 t x im Punkt ( π |ft( π )) den Wert -3 ?

Lösung einblenden

f(x)= - sin( x ) +4 t x

=>f'(x)= - cos( x ) +4 t

Jetzt setzen wir x = π in die Ableitungsfunktion f' ein:

= - cos( π ) +4 t
= -( -1 ) +4 t
= 1 +4 t

Dieser Wert soll ja den Wert -3 besitzen, also gilt:

4t +1 = -3 | -1
4t = -4 |:4
t = -1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 3 2 x 2 +3x im Punkt P(-2|f(-2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).

Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:

f(x)= 3 2 x 2 +3x

=>f'(x)= 3x +3

f'(-2) = 3( -2 ) +3 = -6 +3 = -3

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-2)) = arctan( -3 )) ≈ -71.6°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -71.565° an den Graph der Funktion f mit f(x)= x 2 -9x +5 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -71.565° ist, muss die Steigung dieser Tangente m = tan(-71.565°) ≈ -3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -3 gelten.

Wir leiten somit f mit f(x)= x 2 -9x +5 ab:

f'(x) = 2x -9

Es muss gelten:

2x -9 = -3 | +9
2x = 6 |:2
x = 3

Die gesuchte Stelle ist somit x0 ≈ 3.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -3 x 4 + 1 4 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 68.2 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 68.2 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(68.2°) ≈ 2.5

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -3 x 4 + 1 4 t x

=>f'(x)= -12 x 3 + 1 4 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -12 0 3 + 1 4 t
= 1 4 t

Dieser Wert soll ja ungefähr 2.5 betragen, also gilt:

1 4 t = 2,5 |⋅ 4
t = 10

Als ganzzahligen Wert können wir somit t = 10 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -1 und g(x)= - x 2 -2x +11 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -1 = - x 2 -2x +11 | + x 2 +2x -11
2 x 2 +2x -12 = 0 |:2

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

L={ -3 ; 2 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 2 |f( 2 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 2 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x , also gilt mf = f'( 2 )= 22 = 4

g'(x)= -2x -2 , also gilt mg = g'( 2 )= -22 -2 = -6

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 2 |f( 2 )): α = arctan( 4 ) ≈ 76°

und für den Steigungswinkel von g in S( 2 |g( 2 )) gilt: β = arctan( -6 ) ≈ -80.5°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |76° - ( - 80.5 )°| ≈ 156.5°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 156.5° = 23.5° .