nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 4 -3 und vereinfache:

Lösung einblenden

f(x)= - x 4 -3

f'(x)= -4 x 3 +0

= -4 x 3

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 2 und gib die Steigung von f an der Stelle x=-1 an:

Lösung einblenden

f(x)= - x 2

=>f'(x)= -2x

f'(-1) = -2( -1 ) = 2

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 4 x und vereinfache:

Lösung einblenden

f(x)= 1 4 x

= 1 4 x -1

=> f'(x) = - 1 4 x -2

f'(x)= - 1 4 x 2

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 ( x ) 3 und vereinfache:

Lösung einblenden

f(x)= -2 ( x ) 3

= -2 x 3 2

=> f'(x) = -3 x 1 2

f'(x)= -3 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 10 x 2 +3 t x 2 im Punkt (2|ft(2)) den Wert - 53 2 ?

Lösung einblenden

f(x)= 10 x 2 +3 t x 2

=>f'(x)= - 20 x 3 +6 t x

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= - 20 2 3 +6 t 2
= - 5 2 +12 t

Dieser Wert soll ja den Wert - 53 2 besitzen, also gilt:

12t - 5 2 = - 53 2 |⋅ 2
2( 12t - 5 2 ) = -53
24t -5 = -53 | +5
24t = -48 |:24
t = -2

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 1 2 x 3 - x -3 im Punkt P(-3|f(-3)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-3|f(-3)).

Dazu leiten wir f erst ab und setzen dann x = -3 in die Ableitungsfunktion ein:

f(x)= 1 2 x 3 - x -3

=>f'(x)= 3 2 x 2 -1 +0

f'(-3) = 3 2 ( -3 ) 2 -1 = 3 2 9 -1 = 27 2 -1 = 25 2 ≈ 12.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-3)) = arctan( 25 2 )) ≈ 85.4°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 71.565° an den Graph der Funktion f mit f(x)= 1 2 x 4 + x -9 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 71.565° ist, muss die Steigung dieser Tangente m = tan(71.565°) ≈ 3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 3 gelten.

Wir leiten somit f mit f(x)= 1 2 x 4 + x -9 ab:

f'(x) = 2 x 3 +1

Es muss gelten:

2 x 3 +1 = 3 | -1
2 x 3 = 2 |:2
x 3 = 1 | 3
x = 1 3 = 1

Die gesuchte Stelle ist somit x0 ≈ 1.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= 2 x 4 + 1 4 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 66.04 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 66.04 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(66.04°) ≈ 2.25

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= 2 x 4 + 1 4 t x

=>f'(x)= 8 x 3 + 1 4 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = 8 0 3 + 1 4 t
= 1 4 t

Dieser Wert soll ja ungefähr 2.25 betragen, also gilt:

1 4 t = 2,25 |⋅ 4
t = 9

Als ganzzahligen Wert können wir somit t = 9 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +7x -6 und g(x)= - x 2 +3x schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +7x -6 = - x 2 +3x | + x 2 -3x
2 x 2 +4x -6 = 0 |:2

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 1 |f( 1 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 1 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +7 , also gilt mf = f'( 1 )= 21 +7 = 9

g'(x)= -2x +3 , also gilt mg = g'( 1 )= -21 +3 = 1

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 1 |f( 1 )): α = arctan( 9 ) ≈ 83.7°

und für den Steigungswinkel von g in S( 1 |g( 1 )) gilt: β = arctan( 1 ) ≈ 45°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |83.7° - 45°| ≈ 38.7°