nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x 5 -2x und vereinfache:

Lösung einblenden

f(x)= -5 x 5 -2x

f'(x)= -25 x 4 -2

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= -9 cos( x ) und gib die Steigung von f an der Stelle x= 0 an:

Lösung einblenden

f(x)= -9 cos( x )

=>f'(x)= 9 sin( x )

f'( 0 ) = 9 sin( 0 ) = 90 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 x und vereinfache:

Lösung einblenden

f(x)= 4 x

= 4 x -1

=> f'(x) = -4 x -2

f'(x)= - 4 x 2

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)=0 und vereinfache:

Lösung einblenden

f(x)=0

=0

=> f'(x) = 0

f'(x)=0

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 2 t x 3 - x 2 im Punkt (1|ft(1)) den Wert -44 ?

Lösung einblenden

f(x)= 2 t x 3 - x 2

=>f'(x)= - 6 t x 4 -2x

Jetzt setzen wir x = 1 in die Ableitungsfunktion f' ein:

= - 6 t 1 4 -21
= -6 t -2

Dieser Wert soll ja den Wert -44 besitzen, also gilt:

-6t -2 = -44 | +2
-6t = -42 |:(-6 )
t = 7

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 1 2 x 3 + x 2 -4 im Punkt P(1|f(1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(1|f(1)).

Dazu leiten wir f erst ab und setzen dann x = 1 in die Ableitungsfunktion ein:

f(x)= - 1 2 x 3 + x 2 -4

=>f'(x)= - 3 2 x 2 +2x +0

f'(1) = - 3 2 1 2 +21 = - 3 2 1 +2 = - 3 2 +2 = 1 2 ≈ 0.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(1)) = arctan( 1 2 )) ≈ 26.6°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -63.435° an den Graph der Funktion f mit f(x)= 1 2 x 2 +2x +1 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -63.435° ist, muss die Steigung dieser Tangente m = tan(-63.435°) ≈ -2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -2 gelten.

Wir leiten somit f mit f(x)= 1 2 x 2 +2x +1 ab:

f'(x) = x +2

Es muss gelten:

x +2 = -2 | -2
x = -4

Die gesuchte Stelle ist somit x0 ≈ -4.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -3 x 3 + t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 75.96 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 75.96 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(75.96°) ≈ 3.999

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -3 x 3 + t x

=>f'(x)= -9 x 2 + t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -9 0 2 + t
= t

Dieser Wert soll ja ungefähr 3.999 betragen, also gilt:

t = 3,999

Als ganzzahligen Wert können wir somit t = 4 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 - x -3 und g(x)= - x 2 -3x +21 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 - x -3 = - x 2 -3x +21 | + x 2 +3x -21
2 x 2 +2x -24 = 0 |:2

x 2 + x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

L={ -4 ; 3 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 3 |f( 3 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 3 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x -1 , also gilt mf = f'( 3 )= 23 -1 = 5

g'(x)= -2x -3 , also gilt mg = g'( 3 )= -23 -3 = -9

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 3 |f( 3 )): α = arctan( 5 ) ≈ 78.7°

und für den Steigungswinkel von g in S( 3 |g( 3 )) gilt: β = arctan( -9 ) ≈ -83.7°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |78.7° - ( - 83.7 )°| ≈ 162.4°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 162.4° = 17.6° .