nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= -4 x 3 - x 2 und vereinfache:

Lösung einblenden

f(x)= -4 x 3 - x 2

f'(x)= -12 x 2 -2x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 x 4 +4 und gib die Steigung von f an der Stelle x=0 an:

Lösung einblenden

f(x)= -3 x 4 +4

=>f'(x)= -12 x 3 +0

= -12 x 3

f'(0) = -12 0 3 = -120 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - 6 x und vereinfache:

Lösung einblenden

f(x)= - 6 x

= -6 x -1

=> f'(x) = 6 x -2

f'(x)= 6 x 2

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= x und vereinfache:

Lösung einblenden

f(x)= x

= x 1 2

=> f'(x) = 1 2 x - 1 2

f'(x)= 1 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= -3 sin( x ) +4 t x im Punkt ( - 1 2 π |ft( - 1 2 π )) den Wert 8 ?

Lösung einblenden

f(x)= -3 sin( x ) +4 t x

=>f'(x)= -3 cos( x ) +4 t

Jetzt setzen wir x = - 1 2 π in die Ableitungsfunktion f' ein:

= -3 cos( ( - 1 2 π ) ) +4 t
= -30 +4 t
= 4 t

Dieser Wert soll ja den Wert 8 besitzen, also gilt:

4t = 8 |:4
t = 2

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 1 2 x 2 + 3 2 x im Punkt P(3|f(3)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(3|f(3)).

Dazu leiten wir f erst ab und setzen dann x = 3 in die Ableitungsfunktion ein:

f(x)= - 1 2 x 2 + 3 2 x

=>f'(x)= -x + 3 2

f'(3) = -3 + 3 2 = -3 + 3 2 = - 3 2 ≈ -1.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(3)) = arctan( - 3 2 )) ≈ -56.3°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 45° an den Graph der Funktion f mit f(x)= 3 2 x 2 +4x +7 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 45° ist, muss die Steigung dieser Tangente m = tan(45°) ≈ 1 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 1 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 1 gelten.

Wir leiten somit f mit f(x)= 3 2 x 2 +4x +7 ab:

f'(x) = 3x +4

Es muss gelten:

3x +4 = 1 | -4
3x = -3 |:3
x = -1

Die gesuchte Stelle ist somit x0 ≈ -1.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= - x 3 + t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 83.66 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 83.66 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(83.66°) ≈ 9

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= - x 3 + t x

=>f'(x)= -3 x 2 + t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -3 0 2 + t
= t

Dieser Wert soll ja ungefähr 9 betragen, also gilt:

t = 9

Als ganzzahligen Wert können wir somit t = 9 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +5x -11 und g(x)= - x 2 + x +5 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +5x -11 = - x 2 + x +5 | + x 2 - x -5
2 x 2 +4x -16 = 0 |:2

x 2 +2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

L={ -4 ; 2 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 2 |f( 2 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 2 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +5 , also gilt mf = f'( 2 )= 22 +5 = 9

g'(x)= -2x +1 , also gilt mg = g'( 2 )= -22 +1 = -3

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 2 |f( 2 )): α = arctan( 9 ) ≈ 83.7°

und für den Steigungswinkel von g in S( 2 |g( 2 )) gilt: β = arctan( -3 ) ≈ -71.6°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |83.7° - ( - 71.6 )°| ≈ 155.3°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 155.3° = 24.7° .