nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x 4 -4x und vereinfache:

Lösung einblenden

f(x)= 3 x 4 -4x

f'(x)= 12 x 3 -4

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 sin( x ) und gib die Steigung von f an der Stelle x= 1 2 π an:

Lösung einblenden

f(x)= -5 sin( x )

=>f'(x)= -5 cos( x )

f'( 1 2 π ) = -5 cos( 1 2 π ) = -50 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - 7 4 x und vereinfache:

Lösung einblenden

f(x)= - 7 4 x

= - 7 4 x -1

=> f'(x) = 7 4 x -2

f'(x)= 7 4 x 2

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 3 x und vereinfache:

Lösung einblenden

f(x)= 1 3 x

= 1 3 x 1 2

=> f'(x) = 1 6 x - 1 2

f'(x)= 1 6 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= t x 5 -2x im Punkt (-2|ft(-2)) den Wert 78 ?

Lösung einblenden

f(x)= t x 5 -2x

=>f'(x)= 5 t x 4 -2

Jetzt setzen wir x = -2 in die Ableitungsfunktion f' ein:

= 5 t ( -2 ) 4 -2
= 80 t -2

Dieser Wert soll ja den Wert 78 besitzen, also gilt:

80t -2 = 78 | +2
80t = 80 |:80
t = 1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 3 2 x 2 +3x +7 im Punkt P(-1|f(-1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-1|f(-1)).

Dazu leiten wir f erst ab und setzen dann x = -1 in die Ableitungsfunktion ein:

f(x)= 3 2 x 2 +3x +7

=>f'(x)= 3x +3 +0

f'(-1) = 3( -1 ) +3 = -3 +3 = 0

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-1)) = arctan(0)) ≈ .

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -71.565° an den Graph der Funktion f mit f(x)= 3 2 x 2 -15x +9 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -71.565° ist, muss die Steigung dieser Tangente m = tan(-71.565°) ≈ -3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -3 gelten.

Wir leiten somit f mit f(x)= 3 2 x 2 -15x +9 ab:

f'(x) = 3x -15

Es muss gelten:

3x -15 = -3 | +15
3x = 12 |:3
x = 4

Die gesuchte Stelle ist somit x0 ≈ 4.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= x 2 + 1 2 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr -75.96 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel -75.96 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(-75.96°) ≈ -3.999

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= x 2 + 1 2 t x

=>f'(x)= 2x + 1 2 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = 20 + 1 2 t
= 1 2 t

Dieser Wert soll ja ungefähr -3.999 betragen, also gilt:

1 2 t = -3,999 |⋅ 2
t = -7,998

Als ganzzahligen Wert können wir somit t = -8 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +10x -10 und g(x)= - x 2 +4x -2 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +10x -10 = - x 2 +4x -2 | + x 2 -4x +2
2 x 2 +6x -8 = 0 |:2

x 2 +3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

L={ -4 ; 1 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 1 |f( 1 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 1 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +10 , also gilt mf = f'( 1 )= 21 +10 = 12

g'(x)= -2x +4 , also gilt mg = g'( 1 )= -21 +4 = 2

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 1 |f( 1 )): α = arctan( 12 ) ≈ 85.2°

und für den Steigungswinkel von g in S( 1 |g( 1 )) gilt: β = arctan( 2 ) ≈ 63.4°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |85.2° - 63.4°| ≈ 21.8°