nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 3 x 3 +4 x 2 und vereinfache:

Lösung einblenden

f(x)= 4 3 x 3 +4 x 2

f'(x)= 4 x 2 +8x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 sin( x ) und gib die Steigung von f an der Stelle x= 1 2 π an:

Lösung einblenden

f(x)= 3 sin( x )

=>f'(x)= 3 cos( x )

f'( 1 2 π ) = 3 cos( 1 2 π ) = 30 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 8 x 2 und vereinfache:

Lösung einblenden

f(x)= 8 x 2

= 8 x -2

=> f'(x) = -16 x -3

f'(x)= - 16 x 3

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= - x -4 x 5 und vereinfache:

Lösung einblenden

f(x)= - x -4 x 5

= - x 1 2 -4 x 5

=> f'(x) = - 1 2 x - 1 2 -20 x 4

f'(x)= - 1 2 x -20 x 4

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 2 t x 2 +5x im Punkt (2|ft(2)) den Wert 37 ?

Lösung einblenden

f(x)= 2 t x 2 +5x

=>f'(x)= 4 t x +5

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= 4 t 2 +5
= 8 t +5

Dieser Wert soll ja den Wert 37 besitzen, also gilt:

8t +5 = 37 | -5
8t = 32 |:8
t = 4

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - x 4 + 3 2 x 2 -2 im Punkt P(2|f(2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(2|f(2)).

Dazu leiten wir f erst ab und setzen dann x = 2 in die Ableitungsfunktion ein:

f(x)= - x 4 + 3 2 x 2 -2

=>f'(x)= -4 x 3 +3x +0

f'(2) = -4 2 3 +32 = -48 +6 = -32 +6 = -26

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(2)) = arctan( -26 )) ≈ -87.8°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 63.435° an den Graph der Funktion f mit f(x)= 1 2 x 2 -4x +8 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 63.435° ist, muss die Steigung dieser Tangente m = tan(63.435°) ≈ 2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 2 gelten.

Wir leiten somit f mit f(x)= 1 2 x 2 -4x +8 ab:

f'(x) = x -4

Es muss gelten:

x -4 = 2 | +4
x = 6

Die gesuchte Stelle ist somit x0 ≈ 6.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -2 x 2 + 1 4 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 56.31 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 56.31 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(56.31°) ≈ 1.5

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -2 x 2 + 1 4 t x

=>f'(x)= -4x + 1 4 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -40 + 1 4 t
= 1 4 t

Dieser Wert soll ja ungefähr 1.5 betragen, also gilt:

1 4 t = 1,5 |⋅ 4
t = 6

Als ganzzahligen Wert können wir somit t = 6 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +7x -5 und g(x)= - x 2 +3x +1 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +7x -5 = - x 2 +3x +1 | + x 2 -3x -1
2 x 2 +4x -6 = 0 |:2

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 1 |f( 1 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 1 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +7 , also gilt mf = f'( 1 )= 21 +7 = 9

g'(x)= -2x +3 , also gilt mg = g'( 1 )= -21 +3 = 1

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 1 |f( 1 )): α = arctan( 9 ) ≈ 83.7°

und für den Steigungswinkel von g in S( 1 |g( 1 )) gilt: β = arctan( 1 ) ≈ 45°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |83.7° - 45°| ≈ 38.7°