nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 4 x 4 +3 und vereinfache:

Lösung einblenden

f(x)= 1 4 x 4 +3

f'(x)= x 3 +0

= x 3

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= 7 3 x 3 und gib die Steigung von f an der Stelle x=1 an:

Lösung einblenden

f(x)= 7 3 x 3

=>f'(x)= 7 x 2

f'(1) = 7 1 2 = 71 = 7

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - sin( x ) + 9 2 x 3 und vereinfache:

Lösung einblenden

f(x)= - sin( x ) + 9 2 x 3

= - sin( x ) + 9 2 x -3

=> f'(x) = - cos( x ) - 27 2 x -4

f'(x)= - cos( x ) - 27 2 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= 5 x und vereinfache:

Lösung einblenden

f(x)= 5 x

= 5 x 1 2

=> f'(x) = 5 2 x - 1 2

f'(x)= 5 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= t x 3 -2 x 2 im Punkt (1|ft(1)) den Wert - 14 3 ?

Lösung einblenden

f(x)= t x 3 -2 x 2

= t x 1 3 -2 x 2

=> f'(x)= 1 3 t x - 2 3 -4x

=>f'(x)= t 3 ( x 3 ) 2 -4x

Jetzt setzen wir x = 1 in die Ableitungsfunktion f' ein:

= t 3 ( 1 3 ) 2 -41
= t 3 1 2 -41
= 1 3 t -4

Dieser Wert soll ja den Wert - 14 3 besitzen, also gilt:

1 3 t -4 = - 14 3 |⋅ 3
3( 1 3 t -4 ) = -14
t -12 = -14 | +12
t = -2

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 1 2 x 4 - x 3 -5 im Punkt P(2|f(2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(2|f(2)).

Dazu leiten wir f erst ab und setzen dann x = 2 in die Ableitungsfunktion ein:

f(x)= 1 2 x 4 - x 3 -5

=>f'(x)= 2 x 3 -3 x 2 +0

f'(2) = 2 2 3 -3 2 2 = 28 -34 = 16 -12 = 4

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(2)) = arctan( 4 )) ≈ 76°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -63.435° an den Graph der Funktion f mit f(x)= x 2 +10x -1 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -63.435° ist, muss die Steigung dieser Tangente m = tan(-63.435°) ≈ -2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -2 gelten.

Wir leiten somit f mit f(x)= x 2 +10x -1 ab:

f'(x) = 2x +10

Es muss gelten:

2x +10 = -2 | -10
2x = -12 |:2
x = -6

Die gesuchte Stelle ist somit x0 ≈ -6.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= x 4 + 1 2 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr -77.47 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel -77.47 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(-77.47°) ≈ -4.5

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= x 4 + 1 2 t x

=>f'(x)= 4 x 3 + 1 2 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = 4 0 3 + 1 2 t
= 1 2 t

Dieser Wert soll ja ungefähr -4.5 betragen, also gilt:

1 2 t = -4,5 |⋅ 2
t = -9

Als ganzzahligen Wert können wir somit t = -9 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 und g(x)= - x 2 -4x +6 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 = - x 2 -4x +6 | + x 2 +4x -6
2 x 2 +4x -6 = 0 |:2

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 1 |f( 1 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 1 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x , also gilt mf = f'( 1 )= 21 = 2

g'(x)= -2x -4 , also gilt mg = g'( 1 )= -21 -4 = -6

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 1 |f( 1 )): α = arctan( 2 ) ≈ 63.4°

und für den Steigungswinkel von g in S( 1 |g( 1 )) gilt: β = arctan( -6 ) ≈ -80.5°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |63.4° - ( - 80.5 )°| ≈ 143.9°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 143.9° = 36.1° .