nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 2 5 x 5 -4 x 3 und vereinfache:

Lösung einblenden

f(x)= - 2 5 x 5 -4 x 3

f'(x)= -2 x 4 -12 x 2

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= x 5 und gib die Steigung von f an der Stelle x=-1 an:

Lösung einblenden

f(x)= x 5

=>f'(x)= 5 x 4

f'(-1) = 5 ( -1 ) 4 = 51 = 5

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 3 x 3 und vereinfache:

Lösung einblenden

f(x)= 4 3 x 3

= 4 3 x -3

=> f'(x) = -4 x -4

f'(x)= - 4 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= -4 x und vereinfache:

Lösung einblenden

f(x)= -4 x

= -4 x 1 2

=> f'(x) = -2 x - 1 2

f'(x)= - 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= -3 x 4 +3 t x 2 im Punkt (2|ft(2)) den Wert -108 ?

Lösung einblenden

f(x)= -3 x 4 +3 t x 2

=>f'(x)= -12 x 3 +6 t x

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= -12 2 3 +6 t 2
= -96 +12 t

Dieser Wert soll ja den Wert -108 besitzen, also gilt:

12t -96 = -108 | +96
12t = -12 |:12
t = -1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - x 4 + 3 2 x -1 im Punkt P(-2|f(-2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).

Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:

f(x)= - x 4 + 3 2 x -1

=>f'(x)= -4 x 3 + 3 2 +0

f'(-2) = -4 ( -2 ) 3 + 3 2 = -4( -8 ) + 3 2 = 32 + 3 2 = 67 2 ≈ 33.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-2)) = arctan( 67 2 )) ≈ 88.3°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -63.435° an den Graph der Funktion f mit f(x)= 1 2 x 4 +14x +7 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -63.435° ist, muss die Steigung dieser Tangente m = tan(-63.435°) ≈ -2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -2 gelten.

Wir leiten somit f mit f(x)= 1 2 x 4 +14x +7 ab:

f'(x) = 2 x 3 +14

Es muss gelten:

2 x 3 +14 = -2 | -14
2 x 3 = -16 |:2
x 3 = -8 | 3
x = - 8 3 = -2

Die gesuchte Stelle ist somit x0 ≈ -2.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -2 x 2 + 1 3 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 53.13 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 53.13 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(53.13°) ≈ 1.333

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -2 x 2 + 1 3 t x

=>f'(x)= -4x + 1 3 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -40 + 1 3 t
= 1 3 t

Dieser Wert soll ja ungefähr 1.333 betragen, also gilt:

1 3 t = 1,333 |⋅ 3
t = 3,999

Als ganzzahligen Wert können wir somit t = 4 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -2x +1 und g(x)= - x 2 -4x +13 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -2x +1 = - x 2 -4x +13 | + x 2 +4x -13
2 x 2 +2x -12 = 0 |:2

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

L={ -3 ; 2 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 2 |f( 2 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 2 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x -2 , also gilt mf = f'( 2 )= 22 -2 = 2

g'(x)= -2x -4 , also gilt mg = g'( 2 )= -22 -4 = -8

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 2 |f( 2 )): α = arctan( 2 ) ≈ 63.4°

und für den Steigungswinkel von g in S( 2 |g( 2 )) gilt: β = arctan( -8 ) ≈ -82.9°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |63.4° - ( - 82.9 )°| ≈ 146.3°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 146.3° = 33.7° .