nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 4 - x 2 und vereinfache:

Lösung einblenden

f(x)= - x 4 - x 2

f'(x)= -4 x 3 -2x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= 4x +2 und gib die Steigung von f an der Stelle x=-1 an:

Lösung einblenden

f(x)= 4x +2

=>f'(x)= 4 +0

= 4

f'(-1) = 4

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 x 3 und vereinfache:

Lösung einblenden

f(x)= 4 x 3

= 4 x -3

=> f'(x) = -12 x -4

f'(x)= - 12 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= x +4 und vereinfache:

Lösung einblenden

f(x)= x +4

= x 1 2 +4

=> f'(x) = 1 2 x - 1 2 +0

f'(x)= 1 2 x +0

= 1 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 3 t sin( x ) -2x im Punkt ( 0 |ft( 0 )) den Wert 7 ?

Lösung einblenden

f(x)= 3 t sin( x ) -2x

=>f'(x)= 3 t cos( x ) -2

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

= 3 t cos( 0 ) -2
= 3 t 1 -2
= 3 t -2

Dieser Wert soll ja den Wert 7 besitzen, also gilt:

3t -2 = 7 | +2
3t = 9 |:3
t = 3

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= x 2 - 3 2 x +6 im Punkt P(0|f(0)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(0|f(0)).

Dazu leiten wir f erst ab und setzen dann x = 0 in die Ableitungsfunktion ein:

f(x)= x 2 - 3 2 x +6

=>f'(x)= 2x - 3 2 +0

f'(0) = 20 - 3 2 = 0 - 3 2 = - 3 2 ≈ -1.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(0)) = arctan( - 3 2 )) ≈ -56.3°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -63.435° an den Graph der Funktion f mit f(x)= 1 2 x 2 +5x -4 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -63.435° ist, muss die Steigung dieser Tangente m = tan(-63.435°) ≈ -2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -2 gelten.

Wir leiten somit f mit f(x)= 1 2 x 2 +5x -4 ab:

f'(x) = x +5

Es muss gelten:

x +5 = -2 | -5
x = -7

Die gesuchte Stelle ist somit x0 ≈ -7.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= 3 x 4 + 1 2 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr -63.43 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel -63.43 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(-63.43°) ≈ -2

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= 3 x 4 + 1 2 t x

=>f'(x)= 12 x 3 + 1 2 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = 12 0 3 + 1 2 t
= 1 2 t

Dieser Wert soll ja ungefähr -2 betragen, also gilt:

1 2 t = -2 |⋅ 2
t = -4

Als ganzzahligen Wert können wir somit t = -4 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +2x -5 und g(x)= - x 2 -2x +11 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +2x -5 = - x 2 -2x +11 | + x 2 +2x -11
2 x 2 +4x -16 = 0 |:2

x 2 +2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

L={ -4 ; 2 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 2 |f( 2 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 2 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +2 , also gilt mf = f'( 2 )= 22 +2 = 6

g'(x)= -2x -2 , also gilt mg = g'( 2 )= -22 -2 = -6

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 2 |f( 2 )): α = arctan( 6 ) ≈ 80.5°

und für den Steigungswinkel von g in S( 2 |g( 2 )) gilt: β = arctan( -6 ) ≈ -80.5°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |80.5° - ( - 80.5 )°| ≈ 161°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 161° = 19° .