nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= -4 x 4 - 3 2 x 2 und vereinfache:

Lösung einblenden

f(x)= -4 x 4 - 3 2 x 2

f'(x)= -16 x 3 -3x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x 3 und gib die Steigung von f an der Stelle x=0 an:

Lösung einblenden

f(x)= 2 x 3

=>f'(x)= 6 x 2

f'(0) = 6 0 2 = 60 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - 3 x 3 und vereinfache:

Lösung einblenden

f(x)= - 3 x 3

= -3 x -3

=> f'(x) = 9 x -4

f'(x)= 9 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= -4 x 3 -5 x 3 und vereinfache:

Lösung einblenden

f(x)= -4 x 3 -5 x 3

= -4 x 3 -5 x 1 3

=> f'(x) = -12 x 2 - 5 3 x - 2 3

f'(x)= -12 x 2 - 5 3 ( x 3 ) 2

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= - 8 x 2 +2 t x 2 im Punkt (2|ft(2)) den Wert 10 ?

Lösung einblenden

f(x)= - 8 x 2 +2 t x 2

=>f'(x)= 16 x 3 +4 t x

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= 16 2 3 +4 t 2
= 2 +8 t

Dieser Wert soll ja den Wert 10 besitzen, also gilt:

8t +2 = 10 | -2
8t = 8 |:8
t = 1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= x 2 + 3 2 x im Punkt P(-2|f(-2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).

Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:

f(x)= x 2 + 3 2 x

=>f'(x)= 2x + 3 2

f'(-2) = 2( -2 ) + 3 2 = -4 + 3 2 = - 5 2 ≈ -2.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-2)) = arctan( - 5 2 )) ≈ -68.2°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 71.565° an den Graph der Funktion f mit f(x)= 1 4 x 4 -5x +1 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 71.565° ist, muss die Steigung dieser Tangente m = tan(71.565°) ≈ 3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 3 gelten.

Wir leiten somit f mit f(x)= 1 4 x 4 -5x +1 ab:

f'(x) = x 3 -5

Es muss gelten:

x 3 -5 = 3 | +5
x 3 = 8 | 3
x = 8 3 = 2

Die gesuchte Stelle ist somit x0 ≈ 2.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -2 x 4 + 1 4 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 56.31 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 56.31 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(56.31°) ≈ 1.5

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -2 x 4 + 1 4 t x

=>f'(x)= -8 x 3 + 1 4 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -8 0 3 + 1 4 t
= 1 4 t

Dieser Wert soll ja ungefähr 1.5 betragen, also gilt:

1 4 t = 1,5 |⋅ 4
t = 6

Als ganzzahligen Wert können wir somit t = 6 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 +2x -12 und g(x)= - x 2 +2x +6 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 +2x -12 = - x 2 +2x +6 | +12
x 2 +2x = - x 2 +2x +18 | + x 2 -2x
2 x 2 = 18 |:2
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 3 |f( 3 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 3 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x +2 , also gilt mf = f'( 3 )= 23 +2 = 8

g'(x)= -2x +2 , also gilt mg = g'( 3 )= -23 +2 = -4

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 3 |f( 3 )): α = arctan( 8 ) ≈ 82.9°

und für den Steigungswinkel von g in S( 3 |g( 3 )) gilt: β = arctan( -4 ) ≈ -76°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |82.9° - ( - 76 )°| ≈ 158.9°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 158.9° = 21.1° .