- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 7-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 7 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 7 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 6 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 5 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5040 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin hat für die 5 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 5 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?
Für die erste Stelle (Schokolade) ist jede(r) SchülerInnen möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle (Gummibärchen) ist der/die an erster Stelle (Schokolade) stehende SchülerInnen nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle (Kekse) fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 = 60 Möglichkeiten.