nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Versch./Streck. Extrempkt (ohne x-Streckung)

Beispiel:

Der Graph einer Funktion f besitzt einen Tiefpunkt T(-1|-1). Für die Funktion g gilt : g(x) = 2⋅ f(x)

Gib einen Extrempunkt des Graphen von g an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da g(x) = 2⋅ f(x) gilt, geht der (rote) Graph von g durch Streckung um 2 in y-Richtung aus dem (schwarzen) Graph von f hervor.

Der Tiefpunkt T bleibt also ein Tiefpunkt T, der y-Wert wird jedoch mit dem Faktor 2 multipliziert.

Somit besitzt der Graph von g einen Tiefpunkt T(-1|-2).

Der abgebildete Graph ist natürlich nur einer von unendlich vielen möglichen.

Der schwarz gezeichnete Graph ist der Originalgraph von f(x)= ( x +1 ) 2 -1 , der rot gezeichneten Graph gehört zu g(x) = 2⋅ f(x) = 2( ( x +1 ) 2 -1 ) .

Verschiebung/Streckung Extrempunkte

Beispiel:

Der Graph einer Funktion f besitzt einen Hochpunkt H(-2|2). Für die Funktion g gilt : g(x) = f(x -1)

Gib einen Extrempunkt des Graphen von g an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da g(x) = f(x -1) gilt, geht der (rote) Graph von g durch Verschiebung um 1 in x-Richtung - also um 1 nach rechts - aus dem (schwarzen) Graph von f hervor.

Der Hochpunkt H bleibt also ein Hochpunkt H, der x-Wert wird jedoch um 1 nach rechts verschoben.

Somit besitzt der Graph von g einen Hochpunkt H(-1|2).

Der abgebildete Graph ist natürlich nur einer von unendlich vielen möglichen.

Der schwarz gezeichnete Graph ist der Originalgraph von f(x)= - ( x +2 ) 2 +2 , der rot gezeichneten Graph gehört zu g(x) = f(x -1) = - ( x +1 ) 2 +2 .

Versch./Streck. Extrempkt (2-fach)

Beispiel:

Der Graph einer Funktion f besitzt einen Tiefpunkt T(3|-2). Für die Funktion g gilt : g(x) = - f(-x)

Gib einen Extrempunkt des Graphen von g an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der (blaue) Graph von f(-x) geht durch Spiegelung an der y-Achse aus dem (schwarzen) Graph von f hervor. Der (blaue) Graph von f(-x) hat dann seinen Tiefpunkt T bei x = -3.

Da g(x) = - f(-x) gilt, geht dann der (rote) Graph von g durch Spiegelung an der x-Achse aus dem (blauen) Graph von f hervor.

Der Tiefpunkt T wird also zu einem Hochpunkt H, der y-Wert wird dabei auf die andere Seite der x-Achse gespiegelt.

Somit besitzt der Graph von g einen Hochpunkt H(-3|2).

Der abgebildete Graph ist natürlich nur einer von unendlich vielen möglichen.

Extrempunkte (ohne MNF)

Beispiel:

Berechne die Koordinaten aller Extrempunkte des Graphen von f mit f(x)= x 2 -10x -2 :

Lösung einblenden

f(x)= x 2 -10x -2

Als erstes leitet man die Funktion zwei mal ab.

=>f'(x)= 2x -10 +0

= 2x -10

f''(x)= 2 +0

= 2

Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.

(Alle Extrempunkte haben die Steigung 0).

Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.

2x -10 = 0 | +10
2x = 10 |:2
x = 5

Die Lösung x= 5 ist nun der einzige Kandidat für eine Extremstelle.

Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):

Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)>0).

f''(5 ) = 2 = 2 = 2 >0

Das heißt bei x = 5 ist ein Tiefpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(5 ) = 5 2 -105 -2 = -27
Man erhält so den Tiefpunkt T:(5 | -27 )

Extrempunkte (ganzrational)

Beispiel:

Berechne die Koordinaten aller Extrempunkte des Graphen von f mit f(x)= x 3 -3 x 2 -45x -2 :

Lösung einblenden

f(x)= x 3 -3 x 2 -45x -2

Als erstes leitet man die Funktion zwei mal ab.

=>f'(x)= 3 x 2 -6x -45 +0

= 3 x 2 -6x -45

f''(x)= 6x -6 +0

= 6x -6

Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.

(Alle Extrempunkte haben die Steigung 0).

Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.

3 x 2 -6x -45 = 0 |:3

x 2 -2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

Die Lösungen -3 , 5 sind nun die einzigen Kandidaten für Extremstellen.

Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):

Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)>0).


1.: x=-3

f''(-3 ) = 6( -3 ) -6 = -18 -6 = -24 <0

Das heißt bei x = -3 ist ein Hochpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(-3 ) = ( -3 ) 3 -3 ( -3 ) 2 -45( -3 ) -2 = 79
Man erhält so den Hochpunkt H:(-3 | 79 )


2.: x=5

f''(5 ) = 65 -6 = 30 -6 = 24 >0

Das heißt bei x = 5 ist ein Tiefpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(5 ) = 5 3 -3 5 2 -455 -2 = -177
Man erhält so den Tiefpunkt T:(5 | -177 )

Extrempunkte (auch mit VZW)

Beispiel:

Berechne die Koordinaten aller Extrempunkte des Graphen von f mit f(x)= x 3 -9 x 2 +24x +3 :

Lösung einblenden

f(x)= x 3 -9 x 2 +24x +3

Als erstes leitet man die Funktion zwei mal ab.

=>f'(x)= 3 x 2 -18x +24 +0

= 3 x 2 -18x +24

f''(x)= 6x -18 +0

= 6x -18

Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.

(Alle Extrempunkte haben die Steigung 0).

Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.

3 x 2 -18x +24 = 0 |:3

x 2 -6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 8 21

x1,2 = +6 ± 36 -32 2

x1,2 = +6 ± 4 2

x1 = 6 + 4 2 = 6 +2 2 = 8 2 = 4

x2 = 6 - 4 2 = 6 -2 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 8 = 9 - 8 = 1

x1,2 = 3 ± 1

x1 = 3 - 1 = 2

x2 = 3 + 1 = 4

Die Lösungen 2 , 4 sind nun die einzigen Kandidaten für Extremstellen.

Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):

Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung: f'(x0)=0 und f''(x0)>0).


1.: x=2

f''(2 ) = 62 -18 = 12 -18 = -6 <0

Das heißt bei x = 2 ist ein Hochpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(2 ) = 2 3 -9 2 2 +242 +3 = 23
Man erhält so den Hochpunkt H:(2 | 23 )


2.: x=4

f''(4 ) = 64 -18 = 24 -18 = 6 >0

Das heißt bei x = 4 ist ein Tiefpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(4 ) = 4 3 -9 4 2 +244 +3 = 19
Man erhält so den Tiefpunkt T:(4 | 19 )

Beispielterm für Extrempunktkriterien

Beispiel:

Gib einen Term einer Funktion an, deren Graph einen Sattelpunkt S(1|-2) besitzt, der sich mit Hilfe der 3. Ableitung nachweisen lässt.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wesentlich einfacher wäre es ja ein Funktions-Beispiel mit einen Sattelpunkt S(0|0) im Ursprung zu finden, der sich mit Hilfe der 3. Ableitung nachweisen lässt.

Die einfachste Möglichkeit für einen Sattelpunkt S(0|0) ist wohl der Funktionsterm f1(x)= x 3

Hier gilt dann
f1'(x)= 3 x 2 , f1''(x)= 6x , f1'''(x)= 6 , und somit f1'''(0) = 6 ≠ 0.

Somit hat der Graph der Funktion x 3 einen Sattelpunkt S(0|0), der sich mit Hilfe der 3. Ableitung nachweisen lässt (siehe schwarzer Graph in der nebenstehenden Abbildung ).

Wenn wir nun den Graph um 1 in x-Richtung verschieben, so ändert sich ja nichts an der Form des Graphen (sondern nur an dessen Lage). ( x -1 ) 3 hat also an der Stelle x = 1 genau die gleichen Ableitungswerte wie x 3 an der Stelle x = 0.

Auch bei Verschiebung in y-Richtung ändert sich ja nichts an der Form oder den Ableitungswerten.

Somit hat der Graph von f(x)= ( x -1 ) 3 -2 einen Sattelpunkt S(1|-2), der sich mit Hilfe der 3. Ableitung nachweisen lässt.