Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
y-Wert aus Graph ablesen (mit f(x))
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=4 der (in der Abbildung rechts rote) Punkt (4|f(4)) auf der Höhe y=-1.1 liegt.
y-Wert aus Graph ablesen (mit y)
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x = -2 der (in der Abbildung rechts rote) Punkt (-2|y) auf der Höhe y = 3 liegt.
Differenz zweier Funktionswerte
Beispiel:
Bestimme die Differenz der Funktionswerte f(4)-g(4), achte dabei auch auf das Vorzeichen.
Man liest einfach an der Stelle x=4 die y-Werte der jeweiligen Geradenpunkte ab (die roten Punkte im Schaubild) und erhält:
f(4) = 1
g(4) = 0
Als Differenz ergibt sich also f(4)-g(4) = 1-
Punkt auf Gerade bestimmen
Beispiel:
Der Punkt P(d|1) liegt auf der Geraden mit der Gleichung y=
Welchen Wert muss dann d haben?
Wir setzten einfach den Punkt P(d|1) in die Geradengleichung y= ein:
d für x und 1 für y
1=
Und lösen dann nach d auf.
1=
|
-4= ⋅d |⋅
-4= d
Zur Probe setzen wir den Punkt P(-4|1) noch in die Geradengleichung ein:
1 = -> passt ;-)
Steigung aus Schaubild bestimmen
Beispiel:
Aus der Zeichnung kann man ein Steigungsdreieck erkennen, bei dem man nach rechts 2 und nach oben -1 (bzw. 1 nach unten) abtragen kann. Daraus ergibt sich für die Steigung m= = .
m und c bestimmen
Beispiel:
Aus der Zeichnung erkennt man sofort, dass die Gerade die y-Achse bei y= schneidet. Es gilt also c=.
Jetzt muss man das Steigungsdreieck am besten direkt am y-Achsenabschnitt ablesen.
Um genau auf einem Kästchen zu landen muss man sich nun um 5
nach rechts und um -4 nach oben (bzw. 4 nach unten) bewegen.
Daraus ergibt sich für die Steigung
m= = .
Die Geradengleichung heißt dann: y=
Steigung aus 2 Punkten
Beispiel:
Eine lineare Funktion geht durch die Punkte A(2|4) und B(-2|4). Bestimme die Steigung dieser linearen Funktion.
Wenn man die beiden Punkte in ein Koordinatensystem einzeichnet, kann man am Steigungsdreieck jeweils die Differenzen der x-Werte und der y-Werte ablesen.
Dazu sortieren wir die beiden Punkte von links nach rechts:
links: (-2|4) und rechts: (2|4)
Für die Differenzen subtrahieren wir nun immer die Werte des linken Punkts von denen des rechten:
Differenz der x-Werte: 2 -
Differenz der y-Werte: 4 -
Daraus ergibt sich für die Steigung m = = = = .
Gerade einzeichnen
Beispiel:

Zeichne die Gerade in das rechts stehende Koordinatensystem ein.
Hinweis: Du kannst Punkte setzen indem du auf das Koordinatensystem klickst. Deine Punkte werden automatisch zu einer Geraden ergänzt. Durch Doppelklicken auf das Koordinatensystem kannst du alle bisherigen Elemente löschen.
Die Gleichung entspricht der Form , wobei m die Steigung und c die Verschiebung in y-Richtung ist.
Da die Gerade immer bei y=c die y-Achse schneidet, Kann man den ersten Punkt also schon mal auf Sy(0|) setzen.
Von hier aus zeichnet man danach das Steigungsdreieck ein. Dazu betrachtet man die Steigung m = = .
Man trägt also den Nenner der Steigung m (hier: 4) nach rechts
und den Zähler der Steigung m (hier: 5)
nach oben (bei negativen Steigungen eben nach unten) ab.
Die Verbindungsgerade von Sy(0|) mit dem anderen Ende des Steigungsdreiecks liefert uns die gesuchte Gerade mit dem Funktionsterm .
Proportionaler Term
Beispiel:
Bei zwei propotionalen Größen A und B hat die Größe A den Wert 3 wenn die Größe B den Wert 11.7 hat.
Bestimme die Zuordnungsvorschrift, mit der man jedem Wert der Größe A einen Wert der Größe B zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Größe B', nämlich 11.7 durch den Wert
von 'Größe A' (3) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 3 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Proportionaler Term Anwendung
Beispiel:
Ein Boiler erhitzt Wasser. Dabei wird in 6 Minuten das Wasser um 17,4°C erhitzt. Bestimme die Zuordnungsvorschrift, mit der man jedem Minuten-Wert einen Wert der Wassererhitzung in °C zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Temperaturänderung', nämlich 17.4 durch den Wert
von 'Erhitzungsszeit' (6) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 6 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Wert bei Proportionalität finden
Beispiel:
Bei zwei proportionalen Größen A und B hat die Größe A den Wert 2, wenn die Größe B den Wert 9.2 hat.
Bestimme Zuordnungsvorschrift mit der man Werte der Größe A, Werte der Größe B zuordnen kann.
Welchen Wert nimmt die Größe A ein, wenn die Größe B den Wert 16.1 hat?
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 9.2 = m⋅2.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Größe B, nämlich 9.2 durch den Wert
von Größe A (2) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 2 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
x-Wert bei y = 16.1
Da der/die Größe B den Wert 16.1 hat, muss man 16.1 für y in den Proportionalitäts-Term einsetzen,
um als x den zugehörigen Wert von Größe A zu erhalten:
16.1 = ⋅ x.
Das klappt mit x = , weil dann 16.1 = ⋅ .
Somit gilt für x (Größe A) = = 3.5.
Wert bei Proportionalität (Anwendungen)
Beispiel:
Ein Prepaid-Anbieter verlangt immer den gleichen Preis pro Minute Telefonieren mit dem Handy. Auf einem Werbeplakat steht, dass 5 Minuten nur 30ct kosten. Bestimme die Zuordnungsvorschrift mit der man den telefonierten Minuten den Preis in Cent zuordnen kann.
- Wie viel kostet 19 Minuten?
- Wie lange kann man für 72 Cent telefonieren?
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 30 = m⋅5.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Preis, nämlich 30 durch den Wert
von Minuten (5) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 5 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
- y-Wert bei x = 19
Da der/die Minuten den Wert 19 hat, muss man einfach 19 für x in den Proportionalitäts-Term einsetzen, um als y den zugehörigen Wert von Preis zu erhalten:
.
y= ⋅ 19 = 114 - x-Wert bei y = 72
Da der/die Preis den Wert 72 hat, muss man 72 für y in den Proportionalitäts-Term einsetzen, um als x den zugehörigen Wert von Minuten zu erhalten:
72 = ⋅ x.
Das klappt mit x = , weil dann 72 = ⋅ .
Somit gilt für x (Minuten) = = 12.
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 40 LED-Leuchten á 130 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 16 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
Anzahl LED-Leuchten | Helligkeit |
---|---|
40 | 130 Lumen |
( : 40 ) | ( ⋅ 40 ) |
1 | Lumen |
( ⋅ 16 ) | ( : 16 ) |
16 | Lumen |
Die gesuchte Helligkeit ist also = Lumen