Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 3 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Ass' alle Möglichkeiten enthalten, außer eben 2 mal 'Ass'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Ass')=1- =
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> nicht Ass | |
| nicht Ass -> Ass | |
| nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("nicht Ass")=;
Die relevanten Pfade sind:
'Ass'-'nicht Ass' (P=)
'nicht Ass'-'Ass' (P=)
'nicht Ass'-'nicht Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik
Beispiel:
In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 27 Schüler und in der in der 8c 27 Schüler hat.
Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 27 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 27 = 810 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 27 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 27 ⋅ 27 = 21870 Möglichkeiten ergeben.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 10 blaue und 18 gelbe Kugeln. Es werden 10 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 28 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 10 der insgesamt 28 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 10 von 28 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 2 Kreuzchen auf 10 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 2 gezogenen blauen unter den 10 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 blauen Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 18 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 18 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 18 gelben Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "10 Kugeln aus 28 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = =
=
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 8 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 7 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit
Jetzt bleiben noch 6 Felder (Zahlenschlossräder), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 4 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 4 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 6 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 3 Herz- und 7 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.
Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:
1. Möglichkeit: 4 Herz und 7 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz
Karte von Stapel A gezogen wurde:
P1 =
2. Möglichkeit: 3 Herz und 8 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz
Karte von Stapel A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:
P = P1 + P2 =
