nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 6 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 6 8
= 3 3 2 8
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "höchstens 1 mal C"?

Lösung einblenden

Da ja ausschließlich nach 'C' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'C' und 'nicht C'

Einzel-Wahrscheinlichkeiten :"C": 1 4 ; "nicht C": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal C' alle Möglichkeiten enthalten, außer eben 2 mal 'C'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'C')=1- 1 16 = 15 16

EreignisP
C -> C 1 16
C -> nicht C 3 16
nicht C -> C 3 16
nicht C -> nicht C 9 16

Einzel-Wahrscheinlichkeiten: P("C")= 1 4 ; P("nicht C")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'C'-'nicht C' (P= 3 16 )
  • 'nicht C'-'C' (P= 3 16 )
  • 'nicht C'-'nicht C' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16


Kombinatorik

Beispiel:

Petra hat sich ein 9-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 9 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 362880 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 11 Nougat-, 11 Krokant- und 16 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 18 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 38 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 18 der insgesamt 38 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 18 von 38 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 38 18 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also ( 11 5 ) Möglichkeiten.


Es gibt ( 11 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen Krokanteier unter den 11 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Krokanteier ziehen", also ( 11 5 ) Möglichkeiten.


Es gibt ( 16 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 16 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 16 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 16 Vollmilcheier ziehen", also ( 16 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 5 ) ( 11 5 ) ( 16 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "18 Ostereier aus 38 Ostereier ziehen" ( 38 18 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 5 ) ( 11 5 ) ( 16 8 ) ( 38 18 ) 0,0818 = 8,18%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 6 gleich großen Sektoren, die mit den Zahlen von 1 bis 6 beschriftet sind, wird 9 mal gedreht. Wie groß ist die Wahrscheinlichkeit, dass bei den 9 Drehungen eine Zahl genau 4 mal erscheint und alle anderen 5 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 6 Möglichkeiten gibt, die sich mit den 6 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 6⋅6⋅...⋅6 = 69 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 9 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 9 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die 4 Felder (Drehungen) gibt, auf denen die 4 gleichen Zahlen stehen.
Hierfür gibt es ( 9 4 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 6 möglich sind, gibt es somit ( 9 4 ) ⋅ 6 Möglichkeiten für die Belegung der 4 Felder (Drehungen) mit gleichen Zahlen, weil ja eben jede der 6 Zahlen theoretisch 4-fach vorkommen könnte.

Jetzt bleiben noch 5 Felder (Drehungen), die mit den anderen 5 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 5! = 5⋅4⋅3⋅2⋅1 Möglichkeiten.
(5 Möglichkeiten für das erste Feld, 4 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 9 4 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 = 90720 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 4 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 6⋅6⋅6⋅6⋅6⋅6⋅6⋅6⋅6 = 90720 10077696 0,009 = 0,9%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 8 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 14 33 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 8 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 8 n + 8

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 7 n + 7

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 8 n +8 · 7 n +7 . Da diese Wahrscheinlichkeit ja 14 33 ist, gilt somit:

D=R\{ -8 ; -7 }

56 ( n +8 ) ( n +7 ) = 14 33

Wir multiplizieren den Nenner ( n +8 ) · ( n +7 ) weg!

56 ( n +8 ) · ( n +7 ) = 14 33 |⋅( ( n +8 ) · ( n +7 ) )
56 ( n +8 ) · ( n +7 ) · ( n +8 ) · ( n +7 ) = 14 33 · ( n +8 ) · ( n +7 )
56 n +8 n +8 = 14 33 ( n +8 ) ( n +7 )
56 = 14 33 ( n +8 ) ( n +7 )
56 = 14 33 n 2 + 70 11 n + 784 33
56 = 14 33 n 2 + 70 11 n + 784 33 |⋅ 33
1848 = 33( 14 33 n 2 + 70 11 n + 784 33 )
1848 = 14 n 2 +210n +784 | -14 n 2 -210n -784
-14 n 2 -210n +1064 = 0 |:14

- n 2 -15n +76 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +15 ± ( -15 ) 2 -4 · ( -1 ) · 76 2( -1 )

n1,2 = +15 ± 225 +304 -2

n1,2 = +15 ± 529 -2

n1 = 15 + 529 -2 = 15 +23 -2 = 38 -2 = -19

n2 = 15 - 529 -2 = 15 -23 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 -15n +76 = 0 |: -1

n 2 +15n -76 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 15 2 ) 2 - ( -76 ) = 225 4 + 76 = 225 4 + 304 4 = 529 4

x1,2 = - 15 2 ± 529 4

x1 = - 15 2 - 23 2 = - 38 2 = -19

x2 = - 15 2 + 23 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 2 blaue Kugeln. Im Behälter B sind 3 rote und 7 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 4 rote und 7 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 4 21 55 = 21 110

2. Möglichkeit: 3 rote und 8 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 8 11 7 10 = 28 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 2 4 28 55 = 14 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 21 110 + 14 55 = 49 110 .