nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 8 4 7
= 4 2 1 7
= 2 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 4 vom Typ rot und 6 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 30
rot -> rot -> blau 1 10
rot -> blau -> rot 1 10
rot -> blau -> blau 1 6
blau -> rot -> rot 1 10
blau -> rot -> blau 1 6
blau -> blau -> rot 1 6
blau -> blau -> blau 1 6

Einzel-Wahrscheinlichkeiten: P("rot")= 2 5 ; P("blau")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 1 30 )
'blau'-'blau'-'blau' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 30 + 1 6 = 1 5


Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 11 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 11 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 11 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 211 = 2048 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 11 Nougat-, 12 Krokant- und 13 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 12 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Nougateier und genau 4 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 36 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 12 der insgesamt 36 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 12 von 36 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 36 12 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also ( 11 4 ) Möglichkeiten.


Es gibt ( 12 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Krokanteier unter den 12 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Krokanteier ziehen", also ( 12 4 ) Möglichkeiten.


Es gibt ( 13 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Vollmilcheier unter den 13 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Vollmilcheier ziehen", also ( 13 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 4 ) ( 12 4 ) ( 13 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "12 Ostereier aus 36 Ostereier ziehen" ( 36 12 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 4 ) ( 12 4 ) ( 13 4 ) ( 36 12 ) 0,0933 = 9,33%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 10 gleich großen Sektoren, die mit den Zahlen von 1 bis 10 beschriftet sind, wird 7 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 10 Möglichkeiten gibt, die sich mit den 10 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 10⋅10⋅...⋅10 = 107 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 7 Zahlen unter den 10 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 7 Zahlen von 10 möglichen anzukreuzen. Dies sind ( 10 7 ) Möglichkeiten verschiedene 7er-Pakete aus 10 Zahlen zu packen.

Bei jeder dieser ( 10 7 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 7! = 7⋅6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (7 Möglichkeiten für das erste Feld, 6 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 10 7 ) ⋅7! = 604800 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 10 7 ) ⋅7! 10⋅10⋅10⋅10⋅10⋅10⋅10 = 604800 10000000 0,0605 = 6,05%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 8 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 16 33 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 8 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 8 n + 8

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 7

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 8 8 n + 7

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 8 n +8 · n n +7 . Da diese Wahrscheinlichkeit ja 16 33 ist, gilt somit:

D=R\{ -8 ; -7 }

16n ( n +8 ) ( n +7 ) = 16 33

Wir multiplizieren den Nenner ( n +8 ) ( n +7 ) weg!

16n ( n +8 ) · ( n +7 ) = 16 33 |⋅( ( n +8 ) ( n +7 ) )
16n ( n +8 ) · ( n +7 ) · ( n +8 ) ( n +7 ) = 16 33 · ( n +8 ) ( n +7 )
16 n ( n +8 ) n +8 = 16 33 ( n +8 ) ( n +7 )
16n = 16 33 ( n +8 ) ( n +7 )
16n = 16 33 n 2 + 80 11 n + 896 33
16n = 16 33 n 2 + 80 11 n + 896 33 |⋅ 33
528n = 33( 16 33 n 2 + 80 11 n + 896 33 )
528n = 16 n 2 +240n +896 | -16 n 2 -240n -896
-16 n 2 +288n -896 = 0 |:16

- n 2 +18n -56 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = -18 ± 18 2 -4 · ( -1 ) · ( -56 ) 2( -1 )

n1,2 = -18 ± 324 -224 -2

n1,2 = -18 ± 100 -2

n1 = -18 + 100 -2 = -18 +10 -2 = -8 -2 = 4

n2 = -18 - 100 -2 = -18 -10 -2 = -28 -2 = 14

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 +18n -56 = 0 |: -1

n 2 -18n +56 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -9 ) 2 - 56 = 81 - 56 = 25

x1,2 = 9 ± 25

x1 = 9 - 5 = 4

x2 = 9 + 5 = 14

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 oder 14 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 3 blaue Kugeln. Im Behälter B sind 5 rote und 5 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 6 rote und 5 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 5 2 11 = 4 55

2. Möglichkeit: 5 rote und 6 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 6 11 5 10 = 3 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 5 3 11 = 9 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 4 55 + 9 55 = 13 55 .