nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 8 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 10 8 9
= 2 5 4 9
= 8 45

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal 13-24"?

Lösung einblenden

Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'

Einzel-Wahrscheinlichkeiten :"13-24": 12 37 ; "nicht 13-24": 25 37 ;

EreignisP
13-24 -> 13-24 144 1369
13-24 -> nicht 13-24 300 1369
nicht 13-24 -> 13-24 300 1369
nicht 13-24 -> nicht 13-24 625 1369

Einzel-Wahrscheinlichkeiten: P("13-24")= 12 37 ; P("nicht 13-24")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '13-24'-'nicht 13-24' (P= 300 1369 )
  • 'nicht 13-24'-'13-24' (P= 300 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 = 600 1369


Kombinatorik

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 20-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 20 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 19 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 18 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 20 ⋅ 19 ⋅ 18 ⋅ 17 = 116280 Möglichkeiten, die 20 Möglichkeiten (Schülerin) auf die 4 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 116280 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 116280 24 = 4845 Möglichkeiten für 4er-Gruppen, die aus 20 Elementen (Schülerin) gebildet werden.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 10 blaue, 13 gelbe und 16 grüne Kugeln. Es werden 18 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Kugeln blau und genau 8 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 39 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 18 der insgesamt 39 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 18 von 39 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 39 18 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 10 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen blauen unter den 10 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 blauen Kugeln ziehen", also ( 10 5 ) Möglichkeiten.


Es gibt ( 13 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen gelben unter den 13 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 gelben Kugeln ziehen", also ( 13 5 ) Möglichkeiten.


Es gibt ( 16 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 16 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen grünen unter den 16 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 16 grünen Kugeln ziehen", also ( 16 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 10 5 ) ( 13 5 ) ( 16 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "18 Kugeln aus 39 Kugeln ziehen" ( 39 18 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 10 5 ) ( 13 5 ) ( 16 8 ) ( 39 18 ) 0,0669 = 6,69%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 8 gleich großen Sektoren, die mit den Zahlen von 1 bis 8 beschriftet sind, wird 6 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 8 Möglichkeiten gibt, die sich mit den 8 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 8⋅8⋅...⋅8 = 86 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 6 verschiedene Zahlen auftreten.


Es gibt ( 8 6 ) verschiedene Möglichkeiten 6 Kreuzchen auf 8 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 6 Zahlen unter den 8 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 6 Zahlen von 8 möglichen anzukreuzen. Dies sind ( 8 6 ) Möglichkeiten verschiedene 6er-Pakete aus 8 Zahlen zu packen.

Bei jeder dieser ( 8 6 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 8 6 ) ⋅6! = 20160 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 6 ) ⋅6! 8⋅8⋅8⋅8⋅8⋅8 = 20160 262144 0,0769 = 7,69%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 9 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 9 22 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 9 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 9 n + 9

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 8

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 9 9 n + 8

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 9 n +9 · n n +8 . Da diese Wahrscheinlichkeit ja 9 22 ist, gilt somit:

D=R\{ -9 ; -8 }

18n ( n +9 ) ( n +8 ) = 9 22

Wir multiplizieren den Nenner ( n +9 ) ( n +8 ) weg!

18n ( n +9 ) · ( n +8 ) = 9 22 |⋅( ( n +9 ) ( n +8 ) )
18n ( n +9 ) · ( n +8 ) · ( n +9 ) ( n +8 ) = 9 22 · ( n +9 ) ( n +8 )
18 n ( n +9 ) n +9 = 9 22 ( n +9 ) ( n +8 )
18n = 9 22 ( n +9 ) ( n +8 )
18n = 9 22 n 2 + 153 22 n + 324 11
18n = 9 22 n 2 + 153 22 n + 324 11 |⋅ 22
396n = 22( 9 22 n 2 + 153 22 n + 324 11 )
396n = 9 n 2 +153n +648 | -9 n 2 -153n -648
-9 n 2 +243n -648 = 0 |:9

- n 2 +27n -72 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = -27 ± 27 2 -4 · ( -1 ) · ( -72 ) 2( -1 )

n1,2 = -27 ± 729 -288 -2

n1,2 = -27 ± 441 -2

n1 = -27 + 441 -2 = -27 +21 -2 = -6 -2 = 3

n2 = -27 - 441 -2 = -27 -21 -2 = -48 -2 = 24

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 +27n -72 = 0 |: -1

n 2 -27n +72 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 27 2 ) 2 - 72 = 729 4 - 72 = 729 4 - 288 4 = 441 4

x1,2 = 27 2 ± 441 4

x1 = 27 2 - 21 2 = 6 2 = 3

x2 = 27 2 + 21 2 = 48 2 = 24

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 3 oder 24 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 10 Herz- und 5 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 11 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 5 16 4 15 = 1 12

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 6 1 12 = 1 24

2. Möglichkeit: 10 Herz und 6 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 6 16 5 15 = 1 8

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 6 1 8 = 1 16

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 1 24 + 1 16 = 5 48 .