nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 7 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 9 1 8 7 7
= 1 9 1 4 7 7
= 1 36

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 5 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 9 20 ; "nicht NWT": 11 20 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 18 95 = 77 95

EreignisP
NWT -> NWT 18 95
NWT -> nicht NWT 99 380
nicht NWT -> NWT 99 380
nicht NWT -> nicht NWT 11 38

Einzel-Wahrscheinlichkeiten: P("NWT")= 9 20 ; P("nicht NWT")= 11 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 99 380 )
'nicht NWT'-'NWT' (P= 99 380 )
'nicht NWT'-'nicht NWT' (P= 11 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

99 380 + 99 380 + 11 38 = 77 95


Kombinatorik

Beispiel:

Eine Mathelehrerin hat für die 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 10 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?

Lösung einblenden

Für die erste Stelle (Schokolade) ist jede(r) SchülerInnen möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle (Gummibärchen) ist der/die an erster Stelle (Schokolade) stehende SchülerInnen nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle (Kekse) fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 10 ⋅ 9 ⋅ 8 = 720 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 13 blaue, 11 gelbe und 11 grüne Kugeln. Es werden 10 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 35 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 10 der insgesamt 35 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 10 von 35 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 35 10 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 13 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 13 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 blauen Kugeln ziehen", also ( 13 3 ) Möglichkeiten.


Es gibt ( 11 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen gelben unter den 11 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 gelben Kugeln ziehen", also ( 11 3 ) Möglichkeiten.


Es gibt ( 11 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 11 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 grünen Kugeln ziehen", also ( 11 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 13 3 ) ( 11 3 ) ( 11 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "10 Kugeln aus 35 Kugeln ziehen" ( 35 10 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 13 3 ) ( 11 3 ) ( 11 4 ) ( 35 10 ) 0,0848 = 8,48%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 9 gleich großen Sektoren, die mit den Zahlen von 1 bis 9 beschriftet sind, wird 4 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 9 Möglichkeiten gibt, die sich mit den 9 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 9⋅9⋅...⋅9 = 94 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 4 verschiedene Zahlen auftreten.


Es gibt ( 9 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 9 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 4 Zahlen unter den 9 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 4 Zahlen von 9 möglichen anzukreuzen. Dies sind ( 9 4 ) Möglichkeiten verschiedene 4er-Pakete aus 9 Zahlen zu packen.

Bei jeder dieser ( 9 4 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten. (4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 9 4 ) ⋅4! = 3024 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 4 ) ⋅4! 9⋅9⋅9⋅9 = 3024 6561 0,4609 = 46,09%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 2 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 6 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 6

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 6

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +6 · n -1 n +5 . Da diese Wahrscheinlichkeit ja 2 15 ist, gilt somit:

D=R\{ -6 ; -5 }

n ( n -1 ) ( n +6 ) ( n +5 ) = 2 15

Wir multiplizieren den Nenner ( n +6 ) ( n +5 ) weg!

n ( n -1 ) ( n +6 ) · ( n +5 ) = 2 15 |⋅( ( n +6 ) ( n +5 ) )
n ( n -1 ) ( n +6 ) · ( n +5 ) · ( n +6 ) ( n +5 ) = 2 15 · ( n +6 ) ( n +5 )
n · ( ( n -1 ) · 1 ) 1 = 2 15 ( n +6 ) ( n +5 )
n ( n -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n + n · ( -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n - n = 2 15 ( n +6 ) ( n +5 )
n 2 - n = 2 15 n 2 + 22 15 n +4
n 2 - n = 2 15 n 2 + 22 15 n +4 |⋅ 15
15( n 2 - n ) = 15( 2 15 n 2 + 22 15 n +4 )
15 n 2 -15n = 2 n 2 +22n +60 | -2 n 2 -22n -60

13 n 2 -37n -60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +37 ± ( -37 ) 2 -4 · 13 · ( -60 ) 213

n1,2 = +37 ± 1369 +3120 26

n1,2 = +37 ± 4489 26

n1 = 37 + 4489 26 = 37 +67 26 = 104 26 = 4

n2 = 37 - 4489 26 = 37 -67 26 = -30 26 = - 15 13

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "13 " teilen:

13 n 2 -37n -60 = 0 |: 13

n 2 - 37 13 n - 60 13 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 37 26 ) 2 - ( - 60 13 ) = 1369 676 + 60 13 = 1369 676 + 3120 676 = 4489 676

x1,2 = 37 26 ± 4489 676

x1 = 37 26 - 67 26 = - 30 26 = -1.1538461538462

x2 = 37 26 + 67 26 = 104 26 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 6 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 7 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 6 55 = 18 275

2. Möglichkeit: 6 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 2 11 = 4 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 18 275 + 4 55 = 38 275 .