nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 18 19
= 3 7 2 10 3 19
= 9 665

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 9 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an eine Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 21 55
Mädchen -> Mädchen -> Jungs 9 55
Mädchen -> Jungs -> Mädchen 9 55
Mädchen -> Jungs -> Jungs 9 220
Jungs -> Mädchen -> Mädchen 9 55
Jungs -> Mädchen -> Jungs 9 220
Jungs -> Jungs -> Mädchen 9 220
Jungs -> Jungs -> Jungs 1 220

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 3 4 ; P("Jungs")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Jungs'-'Jungs'-'Jungs' (P= 1 220 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 220 = 1 220


Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 30 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 30 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 30 = 900 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 30 ⋅ 30 = 27000 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 9 Nougat-, 12 Krokant- und 11 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 17 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 32 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 17 der insgesamt 32 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 17 von 32 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 32 17 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 9 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 9 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 9 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 9 Nougateier ziehen", also ( 9 5 ) Möglichkeiten.


Es gibt ( 12 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen Krokanteier unter den 12 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Krokanteier ziehen", also ( 12 4 ) Möglichkeiten.


Es gibt ( 11 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 11 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Vollmilcheier ziehen", also ( 11 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 9 5 ) ( 12 4 ) ( 11 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "17 Ostereier aus 32 Ostereier ziehen" ( 32 17 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 5 ) ( 12 4 ) ( 11 8 ) ( 32 17 ) 0,0182 = 1,82%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 5 gleich großen Sektoren, die mit den Zahlen von 1 bis 5 beschriftet sind, wird 6 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 5 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 5 Möglichkeiten gibt, die sich mit den 5 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 5⋅5⋅...⋅5 = 56 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 6 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 6 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 6 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 5 möglich sind, gibt es somit ( 6 2 ) ⋅ 5 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 5 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 4 Felder (Drehungen), die mit den anderen 4 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten.
(4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 = 1800 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 6 2 ) ⋅ 5 ⋅ 4⋅3⋅2⋅1 5⋅5⋅5⋅5⋅5⋅5 = 1800 15625 0,1152 = 11,52%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 4 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 8 15 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 4 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 4 n + 4

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 3

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 4 4 n + 3

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 4 n +4 · n n +3 . Da diese Wahrscheinlichkeit ja 8 15 ist, gilt somit:

D=R\{ -4 ; -3 }

8n ( n +4 ) ( n +3 ) = 8 15

Wir multiplizieren den Nenner ( n +4 ) ( n +3 ) weg!

8n ( n +4 ) · ( n +3 ) = 8 15 |⋅( ( n +4 ) ( n +3 ) )
8n ( n +4 ) · ( n +3 ) · ( n +4 ) ( n +3 ) = 8 15 · ( n +4 ) ( n +3 )
8 n ( n +4 ) n +4 = 8 15 ( n +4 ) ( n +3 )
8n = 8 15 ( n +4 ) ( n +3 )
8n = 8 15 n 2 + 56 15 n + 32 5
8n = 8 15 n 2 + 56 15 n + 32 5 |⋅ 15
120n = 15( 8 15 n 2 + 56 15 n + 32 5 )
120n = 8 n 2 +56n +96 | -8 n 2 -56n -96
-8 n 2 +64n -96 = 0 |:8

- n 2 +8n -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = -8 ± 8 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

n1,2 = -8 ± 64 -48 -2

n1,2 = -8 ± 16 -2

n1 = -8 + 16 -2 = -8 +4 -2 = -4 -2 = 2

n2 = -8 - 16 -2 = -8 -4 -2 = -12 -2 = 6

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 2 oder 6 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 3 rote und 3 blaue Kugeln. Im Behälter B sind 3 rote und 7 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 4 rote und 7 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 3 6 21 55 = 21 110

2. Möglichkeit: 3 rote und 8 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 8 11 7 10 = 28 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 6 28 55 = 14 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 21 110 + 14 55 = 49 110 .