nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 15 17
= 3 6 5 17
= 5 34

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 324 1369 = 1045 1369

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: rot: 18 37 ; nicht rot: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 342 1369 )
  • 'nicht rot'-'rot' (P= 342 1369 )
  • 'nicht rot'-'nicht rot' (P= 361 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 361 1369 = 1045 1369


Kombinatorik

Beispiel:

Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 13 blaue und 14 gelbe Kugeln. Es werden 7 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 27 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 7 der insgesamt 27 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 7 von 27 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 27 7 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 13 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 13 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 blauen Kugeln ziehen", also ( 13 3 ) Möglichkeiten.


Es gibt ( 14 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 14 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 14 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 14 gelben Kugeln ziehen", also ( 14 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 13 3 ) ( 14 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "7 Kugeln aus 27 Kugeln ziehen" ( 27 7 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 13 3 ) ( 14 4 ) ( 27 7 ) = 286286 888030 0,3224 = 32,24%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 4 gleich großen Sektoren, die mit den Zahlen von 1 bis 4 beschriftet sind, wird 5 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass jede der 4 Zahlen dabei einmal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 4 Möglichkeiten gibt, die sich mit den 4 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 4⋅4⋅...⋅4 = 45 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 5 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 5 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Drehungen) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Drehungen als Zahlen gibt, muss ja eine Zahl bei zwei Drehungen stehen).
Hierfür gibt es ( 5 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 4 möglich sind, gibt es somit ( 5 2 ) ⋅ 4 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 4 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 3 Felder (Drehungen), die mit den anderen 3 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 3! = 3⋅2⋅1 Möglichkeiten.
(3 Möglichkeiten für das erste Feld, 2 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 5 2 ) ⋅ 4 ⋅ 3⋅2⋅1 = 240 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 5 2 ) ⋅ 4 ⋅ 3⋅2⋅1 4⋅4⋅4⋅4⋅4 = 240 1024 0,2344 = 23,44%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 2 21 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 10 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 10

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 10

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +10 · n -1 n +9 . Da diese Wahrscheinlichkeit ja 2 21 ist, gilt somit:

D=R\{ -10 ; -9 }

n ( n -1 ) ( n +10 ) ( n +9 ) = 2 21

Wir multiplizieren den Nenner ( n +10 ) ( n +9 ) weg!

n ( n -1 ) ( n +10 ) · ( n +9 ) = 2 21 |⋅( ( n +10 ) ( n +9 ) )
n ( n -1 ) ( n +10 ) · ( n +9 ) · ( n +10 ) ( n +9 ) = 2 21 · ( n +10 ) ( n +9 )
n · ( ( n -1 ) · 1 ) 1 = 2 21 ( n +10 ) ( n +9 )
n ( n -1 ) = 2 21 ( n +10 ) ( n +9 )
n · n + n · ( -1 ) = 2 21 ( n +10 ) ( n +9 )
n · n - n = 2 21 ( n +10 ) ( n +9 )
n 2 - n = 2 21 n 2 + 38 21 n + 60 7
n 2 - n = 2 21 n 2 + 38 21 n + 60 7 |⋅ 21
21( n 2 - n ) = 21( 2 21 n 2 + 38 21 n + 60 7 )
21 n 2 -21n = 2 n 2 +38n +180 | -2 n 2 -38n -180

19 n 2 -59n -180 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

n1,2 = +59 ± ( -59 ) 2 -4 · 19 · ( -180 ) 219

n1,2 = +59 ± 3481 +13680 38

n1,2 = +59 ± 17161 38

n1 = 59 + 17161 38 = 59 +131 38 = 190 38 = 5

n2 = 59 - 17161 38 = 59 -131 38 = -72 38 = - 36 19 ≈ -1.89

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 5 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 2 blaue Kugeln. Im Behälter B sind 6 rote und 4 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 7 rote und 4 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 4 6 55 = 3 55

2. Möglichkeit: 6 rote und 5 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 2 4 2 11 = 1 11

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 3 55 + 1 11 = 8 55 .