nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 1 19 18 18
= 1 7 1 10 1 19 3 3
= 1 1330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 6 2er und 7 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 49 400
1 -> 2 21 200
1 -> 3 49 400
2 -> 1 21 200
2 -> 2 9 100
2 -> 3 21 200
3 -> 1 49 400
3 -> 2 21 200
3 -> 3 49 400

Einzel-Wahrscheinlichkeiten: P("1")= 7 20 ; P("2")= 3 10 ; P("3")= 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 21 200 )
  • '3'-'2' (P= 21 200 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 200 + 21 200 = 21 100


Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 9 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 9 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 9 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 9 ⋅ 4 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 9 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 9 ⋅ 4 ⋅ 9 = 324 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue und 16 gelbe Kugeln. Es werden 10 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 27 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 10 der insgesamt 27 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 10 von 27 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 27 10 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 2 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 2 ) Möglichkeiten.


Es gibt ( 16 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 16 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 16 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 16 gelben Kugeln ziehen", also ( 16 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 2 ) ( 16 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "10 Kugeln aus 27 Kugeln ziehen" ( 27 10 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 2 ) ( 16 8 ) ( 27 10 ) = 707850 8436285 0,0839 = 8,39%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 12 gleich großen Sektoren, die mit den Zahlen von 1 bis 12 beschriftet sind, wird 7 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 12 Möglichkeiten gibt, die sich mit den 12 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 12⋅12⋅...⋅12 = 127 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.


Es gibt ( 12 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 12 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 7 Zahlen unter den 12 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 7 Zahlen von 12 möglichen anzukreuzen. Dies sind ( 12 7 ) Möglichkeiten verschiedene 7er-Pakete aus 12 Zahlen zu packen.

Bei jeder dieser ( 12 7 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 7! = 7⋅6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (7 Möglichkeiten für das erste Feld, 6 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 12 7 ) ⋅7! = 3991680 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 7 ) ⋅7! 12⋅12⋅12⋅12⋅12⋅12⋅12 = 3991680 35831808 0,1114 = 11,14%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 2 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 28 45 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 2 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 2

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 2

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +2 · n -1 n +1 . Da diese Wahrscheinlichkeit ja 28 45 ist, gilt somit:

D=R\{ -2 ; -1 }

n ( n -1 ) ( n +2 ) ( n +1 ) = 28 45

Wir multiplizieren den Nenner ( n +2 ) ( n +1 ) weg!

n ( n -1 ) ( n +2 ) · ( n +1 ) = 28 45 |⋅( ( n +2 ) ( n +1 ) )
n ( n -1 ) ( n +2 ) · ( n +1 ) · ( n +2 ) ( n +1 ) = 28 45 · ( n +2 ) ( n +1 )
n · ( ( n -1 ) · 1 ) 1 = 28 45 ( n +2 ) ( n +1 )
n ( n -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n + n · ( -1 ) = 28 45 ( n +2 ) ( n +1 )
n · n - n = 28 45 ( n +2 ) ( n +1 )
n 2 - n = 28 45 n 2 + 28 15 n + 56 45
n 2 - n = 28 45 n 2 + 28 15 n + 56 45 |⋅ 45
45( n 2 - n ) = 45( 28 45 n 2 + 28 15 n + 56 45 )
45 n 2 -45n = 28 n 2 +84n +56 | -28 n 2 -84n -56

17 n 2 -129n -56 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +129 ± ( -129 ) 2 -4 · 17 · ( -56 ) 217

n1,2 = +129 ± 16641 +3808 34

n1,2 = +129 ± 20449 34

n1 = 129 + 20449 34 = 129 +143 34 = 272 34 = 8

n2 = 129 - 20449 34 = 129 -143 34 = -14 34 = - 7 17

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "17 " teilen:

17 n 2 -129n -56 = 0 |: 17

n 2 - 129 17 n - 56 17 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 129 34 ) 2 - ( - 56 17 ) = 16641 1156 + 56 17 = 16641 1156 + 3808 1156 = 20449 1156

x1,2 = 129 34 ± 20449 1156

x1 = 129 34 - 143 34 = - 14 34 = -0.41176470588235

x2 = 129 34 + 143 34 = 272 34 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 8 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 2 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 8 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 9 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 13 3 12 = 1 13

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 2 5 1 13 = 2 65

2. Möglichkeit: 8 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 13 4 12 = 5 39

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 5 5 39 = 1 13

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 2 65 + 1 13 = 7 65 .