Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 2 rote und 10 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'
Einzel-Wahrscheinlichkeiten :"A": ; "nicht A": ;
Ereignis | P |
---|---|
A -> A | |
A -> nicht A | |
nicht A -> A | |
nicht A -> nicht A |
Einzel-Wahrscheinlichkeiten: P("A")=; P("nicht A")=;
Die relevanten Pfade sind:- 'A'-'A' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik
Beispiel:
Eine bestimmte Variable soll im Computer mit 12 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?
Bei jedem der 12 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 12 Ebenen immer 2-fach verzweigt.
Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 212 = 4096 Möglichkeiten.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 9 blaue und 18 gelbe Kugeln. Es werden 13 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 27 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 13 der insgesamt 27 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 13 von 27 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:









Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 9 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen blauen unter den 9 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 9 blauen Kugeln ziehen", also Möglichkeiten.


















Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 18 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 18 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 18 gelben Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "13 Kugeln aus 27 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = =
=
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 5 gleich großen Sektoren, die mit den Zahlen von 1 bis 5 beschriftet sind, wird 7 mal gedreht. Wie groß ist die Wahrscheinlichkeit, dass bei den 7 Drehungen eine Zahl genau 3 mal erscheint und alle anderen 4 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 5 Möglichkeiten gibt, die sich mit den 5 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 5⋅5⋅...⋅5 = 57 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle







Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 5 möglich sind, gibt es somit
Jetzt bleiben noch 4 Felder (Drehungen), die mit den anderen 4 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten.
(4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 3 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P =
Insgesamt sind also n + 3 Kugeln im Behälter.
Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann
Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also
D=R\{
|
= |
|
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
= |
|
|
= |
|
|⋅ 15 |
|
= |
|
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die
ganze Gleichung durch "
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 7 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Kartenstapel A sind 3 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 4 Herz- und 6 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.
Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:
1. Möglichkeit: 5 Herz und 6 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz
Karte von Stapel A gezogen wurde:
P1 =
2. Möglichkeit: 4 Herz und 7 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz
Karte von Stapel A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:
P = P1 + P2 =