Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 8 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 8 Schüler mit sprachlichem Profil, 2 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'NWT')=1- =
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'NWT'-'nicht NWT' (P=)
'nicht NWT'-'NWT' (P=)
'NWT'-'NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 3 Schülerinnen. Diese möchte sie zufällig aus der 25-köpfigen Sportgruppe losen. Wie viele verschiedene 3er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 25 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 24 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 23 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 25 ⋅ 24 ⋅ 23 = 13800 Möglichkeiten, die 25 Möglichkeiten (Schülerin) auf die 3 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 3er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 3er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 3er-Gruppe möglich. Es gibt also 3 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 2 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 1 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 3 ⋅ 2 ⋅ 1 = 6 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 3er-Gruppe.
Wir müssen deswegen die 13800 Möglichkeiten für nach Reihenfolge sortierte 3er-Gruppen durch die 6 Möglichkeiten, die 3er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 2300 Möglichkeiten für 3er-Gruppen, die aus 25 Elementen (Schülerin) gebildet werden.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
Oma Hilde hat 13 Nougat-, 11 Krokant- und 11 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 16 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 35 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 16 der insgesamt 35 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 16 von 35 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 5 Kreuzchen auf 13 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 13 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 13 Nougateier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 3 gezogenen Krokanteier unter den 11 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Krokanteier ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 11 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Vollmilcheier ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "16 Ostereier aus 35 Ostereier ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = = ≈ 0,0086 = 0,86%
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Glücksrad mit 6 gleich großen Sektoren, die mit den Zahlen von 1 bis 6 beschriftet sind, wird 8 mal gedreht. Wie groß ist die Wahrscheinlichkeit, dass bei den 8 Drehungen eine Zahl genau 3 mal erscheint und alle anderen 5 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 6 Möglichkeiten gibt, die sich mit den 6 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 6⋅6⋅...⋅6 = 68 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 6 möglich sind, gibt es somit
Jetzt bleiben noch 5 Felder (Drehungen), die mit den anderen 5 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 5! = 5⋅4⋅3⋅2⋅1 Möglichkeiten.
(5 Möglichkeiten für das erste Feld, 4 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 10 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 10 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 21 |
|
|
= |
|
|
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die
ganze Gleichung durch "
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 5 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 2 rote und 2 blaue Kugeln. Im Behälter B sind 2 rote und 8 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 3 rote und 8 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 2 rote und 9 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
