Processing math: 100%


nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl 0,08 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl 0,08 nach dem Komma 2 Stellen hat, verschieben wir das Komma im Zähler um 2 Stellen nach links und wählen dafür als Nenner 100, also:

0,08 = 8100

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch 200500 als Dezimalzahl.

Lösung einblenden

Wir erweitern den Bruch mit 2 damit wir im Nenner eine Zehner-Potenz haben (eine 1 und lauter Nullen).

200500 = 4001000

Jetzt können wir einfach das Komma im Zähler um 3 Stellen nach links verschieben, um den Nenner loszuwerden:

4001000 = 0,41 = 0,4

Dezimalzahl an der Zahlengeraden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 2 gleichgroße Teile unterteilt, von denen somit jedes die Länge 12 hat.

Man könnte jetzt einfach die Strichchen von der 0 bis zur Markierung zählen; schneller geht's aber, wenn man die ganzen Einheiten als 22 zählt. In beiden Fällen erhält man als Zähler 7, weil die Markierung eben auf dem 7-ten Strichchen liegt.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: -72

Jetzt müssen wir eben noch den Bruch auf den Nenner 10 erweitern, um ihn in Dezimalschreibweise angeben zu können:

-72 = -3510 = -3,5

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 0,13; 0,1 und 0,14 von klein nach groß.

Lösung einblenden

Da die Zahlen 2 Stellen oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 100 im Nenner schreiben:

0,13 = 13100

0,1 = 10100

0,14 = 14100

Jetzt können wir einfach die Zähler sortieren:

10 < 13 < 14

Somit gilt für die gegebenen Dezimalzahlen:

0,1 < 0,13 < 0,14

Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Um -23 und -0.5 besser vergleichen zu können, wandeln wir -0.5 in einen Bruch um: -0,5 = -510 = -12

Vergleich von -23 und -0.5=-12

Wenn man genau hinschaut, erkennt man, dass der Zähler des 1. ten Bruch doppelt so groß ist wie der des 2. ten. Wir erweitern deswegen den 2-ten Bruch mit 2: 12 = 24

Jetzt kann man gut erkennen, dass 23 > 24=12, weil der größere Nenner den Bruch kleiner macht (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Somit gilt für die positiven Brüche: 23 > 12
Für die negativen Werte gilt also -23 < -12= -0.5 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von -2117 und -2217

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 17 teilt, als bei der kleineren, wenn man diese durch 17 teilt). Somit gilt für die positiven Brüche: 2117 < 2217
Für die negativen Werte gilt also -2117 > -2217 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von -1.2 und -1

Wenn man einfach das Komma bei beiden Zahlen um 1 Stelle nach links verschiebt, erkennt man, dass -12 < -10 gilt.

Es gilt hier also -1,2 < -1

Mitte finden (Dezimalzahlen)

Beispiel:

Welche Zahl liegt in der Mitte von 0,55 und 0,552 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.001, weil ja die beiden Zahlen bis zu 3 Stellen hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen 0,55 und 0,552 bei 0,551 sein muss.

Die Mitte von 0,55 und 0,552 ist also: 0,551

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Volumen (Maßzahlen dezimal)

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 0,439 m³ = ..... cm³

Lösung einblenden
Die korrekte Antwort lautet:
0,439 m³ = 439000 cm³

Stellenwerttafel

Beispiel:

Schreibe in der Dezimalschreibweise:

Lösung einblenden

Wir haben ja 2 Hunderter + 7 Zehner + 1 Einer, 4 zehntel,0 hundertstel und 0 tausendstel.

Also gilt für unser Dezimalzahl 2⋅100 + 7⋅10 + 1⋅1 + 4⋅110 + 0⋅1100 + 0⋅11000
= 2⋅100 + 7⋅10 + 1⋅1 + 4⋅0,1 + 0⋅0,01 + 0⋅0,001
= 200 + 70 + 1 + 0.4 + 0 + 0
=271,4