nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Dezimalzahl als Bruch schreiben

Beispiel:

Gib die Zahl -4,45 als Bruch mit ganzen Zahlen in Zähler und Nenner an.

Lösung einblenden

Da unsere Zahl -4,45 nach dem Komma 2 Stellen hat, verschieben wir das Komma im Zähler um 2 Stellen nach links und wählen dafür als Nenner 100, also:

-4,45 = - 445 100

Bruch als Dezimalzahl schreiben

Beispiel:

Schreibe den Bruch 24 25 als Dezimalzahl.

Lösung einblenden

Wir erweitern den Bruch mit 4 damit wir im Nenner eine Zehner-Potenz haben (eine 1 und lauter Nullen).

24 25 = 96 100

Jetzt können wir einfach das Komma im Zähler um 2 Stellen nach links verschieben, um den Nenner loszuwerden:

96 100 = 0,96 1 = 0,96

Dezimalzahl an der Zahlengeraden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gib die markierten Zahl an der Zahlengeraden als Bruch und als Dezimalzahl an:

Lösung einblenden

Zuerst zählen wir die Strichchen zwischen -1 und 0 und erkennen, dass diese Strichchen eine Einheit in 4 gleichgroße Teile unterteilt, von denen somit jedes die Länge 1 4 hat.

Das die Markierung auf dem 3-ten Strichchen liegt, muss im Zähler des gesuchten Bruchs die Zahl 3 stehen.

Da die Markierung links von der 0 liegt, braucht der Bruch noch ein negatives Vorzeichen.

Der gesuchte Bruch ist also: - 3 4

Jetzt müssen wir eben noch den Bruch auf den Nenner 100 erweitern, um ihn in Dezimalschreibweise angeben zu können:

- 3 4 = - 75 100 = -0,75

Dezimalzahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen 0,025; 0,026 und 0,03 von klein nach groß.

Lösung einblenden

Da die Zahlen 3 Stellen oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 1000 im Nenner schreiben:

0,025 = 25 1000

0,026 = 26 1000

0,03 = 30 1000

Jetzt können wir einfach die Zähler sortieren:

25 < 26 < 30

Somit gilt für die gegebenen Dezimalzahlen:

0,025 < 0,026 < 0,03

Bruch und Dezimalzahl vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Vergleich von 1.4 und 1.75

Wenn man einfach das Komma bei beiden Zahlen um 2 Stellen nach links verschiebt, erkennt man, dass 140 < 175 gilt.

Es gilt hier also 1,4 < 1,75

Vergleich von - 19 11 und - 18 11

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 11 teilt, als bei der kleineren, wenn man diese durch 11 teilt). Somit gilt für die positiven Brüche: 19 11 > 18 11
Für die negativen Werte gilt also - 19 11 < - 18 11 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von - 12 7 und - 24 14

Wenn man genau hinschaut, erkennt man, dass der Zähler des 2. ten Bruch doppelt so groß ist wie der des 1. ten. Wir erweitern deswegen den 1-ten Bruch mit 2: 12 7 = 24 14

Jetzt kann man gut erkennen, dass 12 7 = 24 14 = 24 14 . Es gilt hier also also - 12 7 = - 24 14


Mitte finden (Dezimalzahlen)

Beispiel:

Welche Zahl liegt in der Mitte von 0,31 und 0,316 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.001, weil ja die beiden Zahlen bis zu 3 Stellen hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen 0,31 und 0,316 bei 0,313 sein muss.

Die Mitte von 0,31 und 0,316 ist also: 0,313

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Längen (Maßzahlen dezimal)

Beispiel:

Wandle die Längenangabe in die angegebene Einheit um: 5,42 mm = ..... cm

Lösung einblenden
Die korrekte Antwort lautet:
5,42 mm = 0,542 cm

Stellenwerttafel

Beispiel:

Trage die Dezimalzahl richtig in die Stellenwerttafel ein:

Lösung einblenden

Vor dem Komma steht ja 1 = 0⋅100 + 0⋅10 + 1⋅1.

Somit haben wir 0 Hunderter, 0 Zehner und 1 Einer.

Nach dem Komma steht ja 0.509 = 5⋅0,1 + 0⋅0,01 + 9⋅0,001 = 5⋅ 1 10 + 0⋅ 1 100 + 9⋅ 1 1000 .

Somit haben wir 5 zehntel, 0 hundertstel und 9 tausendstel.

DezimalzahlGanzeDezimale
 HunderterZehnerEinerzehntelhundertsteltausendstel
1,50900 15 09