nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -2x = 0
2 x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 -10x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -10x = 0
x ( x -10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -10 = 0 | +10
x2 = 10

L={0; 10 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+10 2 = 5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(5|y) mit y = 5 2 -105 = 25 -50 = -25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=10 , Scheitel: S(5|-25).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -4x +1 .

Lösung einblenden

1. Weg

y= x 2 -4x +1

Man erweitert die ersten beiden Summanden ( x 2 -4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -4x durch 2x und quadriert diese Ergebnis -2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -4x +4 -4 +1

= ( x -2 ) 2 -4 +1

= ( x -2 ) 2 -3

Jetzt kann man den Scheitel leicht ablesen: S(2|-3).


2. Weg

Wir betrachten nun nur x 2 -4x . Deren Parabel sieht ja genau gleich aus wie x 2 -4x +1 nur um 1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -4x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -4x = 0
x ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -4 = 0 | +4
x2 = 4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(2|y).

y = 2 2 -42 +1 = 4 -8 +1 = -3

also: S(2|-3).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 1 2 x 2 -3x -3 .

Lösung einblenden

1. Weg

y= 1 2 x 2 -3x -3

= 1 2 ( x 2 -6x ) -3

Man erweitert die ersten beiden Summanden ( x 2 -6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -6x durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 1 2 ( x 2 -6x +9 -9 ) -3

= 1 2 ( x 2 -6x +9 ) + 1 2 · ( -9 ) -3

= 1 2 ( x -3 ) 2 - 9 2 -3

= 1 2 ( x -3 ) 2 - 15 2

Jetzt kann man den Scheitel leicht ablesen: S(3|-7.5).


2. Weg

Wir betrachten nun nur 1 2 x 2 -3x . Deren Parabel sieht ja genau gleich aus wie 1 2 x 2 -3x -3 nur um -3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 1 2 x 2 -3x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

1 2 x 2 -3x = 0 |⋅ 2
2( 1 2 x 2 -3x ) = 0
x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|y).

y = 1 2 3 2 -33 -3 = 9 2 -9 -3 = -7.5

also: S(3|-7.5).