nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 2 x 2 +10x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +10x = 0
2 x ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +5 = 0 | -5
x2 = -5

L={ -5 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -5+0 2 = -2.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2.5|y) mit y = 2 ( -2,5 ) 2 +10( -2,5 ) = 12,5 -25 = -12.5.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-5 und x2=0 , Scheitel: S(-2.5|-12.5).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 +2x -4 .

Lösung einblenden

1. Weg

y= x 2 +2x -4

Man erweitert die ersten beiden Summanden ( x 2 +2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 2x durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +2x +1 -1 -4

= ( x +1 ) 2 -1 -4

= ( x +1 ) 2 -5

Jetzt kann man den Scheitel leicht ablesen: S(-1|-5).


2. Weg

Wir betrachten nun nur x 2 +2x . Deren Parabel sieht ja genau gleich aus wie x 2 +2x -4 nur um -4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|y).

y = ( -1 ) 2 +2( -1 ) -4 = 1 -2 -4 = -5

also: S(-1|-5).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 3 x 2 +24x +1 .

Lösung einblenden

1. Weg

y= 3 x 2 +24x +1

= 3( x 2 +8x ) +1

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 3( x 2 +8x +16 -16 ) +1

= 3( x 2 +8x +16 ) + 3 · ( -16 ) +1

= 3 ( x +4 ) 2 -48 +1

= 3 ( x +4 ) 2 -47

Jetzt kann man den Scheitel leicht ablesen: S(-4|-47).


2. Weg

Wir betrachten nun nur 3 x 2 +24x . Deren Parabel sieht ja genau gleich aus wie 3 x 2 +24x +1 nur um 1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 3 x 2 +24x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

3 x 2 +24x = 0
3 x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|y).

y = 3 ( -4 ) 2 +24( -4 ) +1 = 48 -96 +1 = -47

also: S(-4|-47).