nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+2 2 = 1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1|y) mit y = 1 2 -21 = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=2 , Scheitel: S(1|-1).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 +6x +4 .

Lösung einblenden

1. Weg

y= x 2 +6x +4

Man erweitert die ersten beiden Summanden ( x 2 +6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 6x durch 2x und quadriert diese Ergebnis 3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +6x +9 -9 +4

= ( x +3 ) 2 -9 +4

= ( x +3 ) 2 -5

Jetzt kann man den Scheitel leicht ablesen: S(-3|-5).


2. Weg

Wir betrachten nun nur x 2 +6x . Deren Parabel sieht ja genau gleich aus wie x 2 +6x +4 nur um 4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-3|y).

y = ( -3 ) 2 +6( -3 ) +4 = 9 -18 +4 = -5

also: S(-3|-5).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 2 x 2 +16x -3 .

Lösung einblenden

1. Weg

y= 2 x 2 +16x -3

= 2( x 2 +8x ) -3

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 2( x 2 +8x +16 -16 ) -3

= 2( x 2 +8x +16 ) + 2 · ( -16 ) -3

= 2 ( x +4 ) 2 -32 -3

= 2 ( x +4 ) 2 -35

Jetzt kann man den Scheitel leicht ablesen: S(-4|-35).


2. Weg

Wir betrachten nun nur 2 x 2 +16x . Deren Parabel sieht ja genau gleich aus wie 2 x 2 +16x -3 nur um -3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 2 x 2 +16x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

2 x 2 +16x = 0
2 x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|y).

y = 2 ( -4 ) 2 +16( -4 ) -3 = 32 -64 -3 = -35

also: S(-4|-35).