nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

L={0; 8 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 2 x 2 +8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +8x = 0
2 x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -4+0 2 = -2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2|y) mit y = 2 ( -2 ) 2 +8( -2 ) = 8 -16 = -8.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-4 und x2=0 , Scheitel: S(-2|-8).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 +8x +3 .

Lösung einblenden

1. Weg

y= x 2 +8x +3

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +8x +16 -16 +3

= ( x +4 ) 2 -16 +3

= ( x +4 ) 2 -13

Jetzt kann man den Scheitel leicht ablesen: S(-4|-13).


2. Weg

Wir betrachten nun nur x 2 +8x . Deren Parabel sieht ja genau gleich aus wie x 2 +8x +3 nur um 3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +8x = 0
x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|y).

y = ( -4 ) 2 +8( -4 ) +3 = 16 -32 +3 = -13

also: S(-4|-13).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -2x +2 .

Lösung einblenden

1. Weg

y= x 2 -2x +2

Man erweitert die ersten beiden Summanden ( x 2 -2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -2x durch 2x und quadriert diese Ergebnis -1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -2x +1 -1 +2

= x 2 -2x +1 + 1 · ( -1 ) +2

= ( x -1 ) 2 -1 +2

= ( x -1 ) 2 +1

Jetzt kann man den Scheitel leicht ablesen: S(1|1).


2. Weg

Wir betrachten nun nur x 2 -2x . Deren Parabel sieht ja genau gleich aus wie x 2 -2x +2 nur um 2 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(1|y).

y = 1 2 -21 +2 = 1 -2 +2 = 1

also: S(1|1).