nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 5 x 2 -8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

5 x 2 -8x = 0
x ( 5x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

5x -8 = 0 | +8
5x = 8 |:5
x2 = 8 5 = 1.6

L={0; 8 5 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 4 x 2 -20x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

4 x 2 -20x = 0
4 x ( x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -5 = 0 | +5
x2 = 5

L={0; 5 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+5 2 = 2.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(2.5|y) mit y = 4 2,5 2 -202,5 = 25 -50 = -25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=5 , Scheitel: S(2.5|-25).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -10x -1 .

Lösung einblenden

1. Weg

y= x 2 -10x -1

Man erweitert die ersten beiden Summanden ( x 2 -10x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -10x durch 2x und quadriert diese Ergebnis -5 zu 25. Diese 25 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 25, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -10x +25 -25 -1

= ( x -5 ) 2 -25 -1

= ( x -5 ) 2 -26

Jetzt kann man den Scheitel leicht ablesen: S(5|-26).


2. Weg

Wir betrachten nun nur x 2 -10x . Deren Parabel sieht ja genau gleich aus wie x 2 -10x -1 nur um -1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -10x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -10x = 0
x ( x -10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -10 = 0 | +10
x2 = 10

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(5|y).

y = 5 2 -105 -1 = 25 -50 -1 = -26

also: S(5|-26).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -6x +4 .

Lösung einblenden

1. Weg

y= x 2 -6x +4

Man erweitert die ersten beiden Summanden ( x 2 -6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -6x durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -6x +9 -9 +4

= x 2 -6x +9 + 1 · ( -9 ) +4

= ( x -3 ) 2 -9 +4

= ( x -3 ) 2 -5

Jetzt kann man den Scheitel leicht ablesen: S(3|-5).


2. Weg

Wir betrachten nun nur x 2 -6x . Deren Parabel sieht ja genau gleich aus wie x 2 -6x +4 nur um 4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|y).

y = 3 2 -63 +4 = 9 -18 +4 = -5

also: S(3|-5).