Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 40 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 95 | 0.7014 |
| 96 | 0.6711 |
| 97 | 0.6399 |
| 98 | 0.6081 |
| 99 | 0.5758 |
| 100 | 0.5433 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 100 Versuchen auch ungefähr 40 (≈0.4⋅100) Treffer auftreten.
Wir berechnen also mit unserem ersten n=100:
≈ 0.5433
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=95 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 27 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 76 | 0.181 |
| 77 | 0.1586 |
| 78 | 0.1383 |
| 79 | 0.1201 |
| 80 | 0.1037 |
| 81 | 0.0892 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 68 Versuchen auch ungefähr 27 (≈0.4⋅68) Treffer auftreten.
Wir berechnen also mit unserem ersten n=68:
≈ 0.4345
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=81 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 81 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 33 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 68 | 0.3582 |
| 69 | 0.3152 |
| 70 | 0.2752 |
| 71 | 0.2383 |
| 72 | 0.2048 |
| 73 | 0.1746 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 66 Versuchen auch ungefähr 33 (≈0.5⋅66) Treffer auftreten.
Wir berechnen also mit unserem ersten n=66:
≈ 0.4511
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=73 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 73 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
