Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 28 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
93 | 0.5598 |
94 | 0.5329 |
95 | 0.506 |
96 | 0.4793 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 93 Versuchen auch ungefähr 28 (≈0.3⋅93) Treffer auftreten.
Wir berechnen also mit unserem ersten n=93:
≈ 0.5598
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=95 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,9.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 27 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
30 | 0.3526 |
31 | 0.1932 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.9 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 90% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 30 Versuchen auch ungefähr 27 (≈0.9⋅30) Treffer auftreten.
Wir berechnen also mit unserem ersten n=30:
≈ 0.3526
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=31 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 31 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,25.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, mindestens 33 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
132 | 0.4666 |
133 | 0.4468 |
134 | 0.4273 |
135 | 0.408 |
136 | 0.3891 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.
Es muss gelten: ≥ 0.6
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.6 |+ - 0.6
0.4 ≥ oder ≤ 0.4
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 132 Versuchen auch ungefähr 33 (≈0.25⋅132) Treffer auftreten.
Wir berechnen also mit unserem ersten n=132:
≈ 0.4666
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=136 die gesuchte Wahrscheinlichkeit unter 0.4 ist.
n muss also mindestens 136 sein, damit ≤ 0.4 oder eben ≥ 0.6 gilt.