Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.
Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, höchstens 29 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
38 | 0.8482 |
39 | 0.7759 |
40 | 0.6913 |
41 | 0.599 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 41 Versuchen auch ungefähr 29 (≈0.7⋅41) Treffer auftreten.
Wir berechnen also mit unserem ersten n=41:
≈ 0.599
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=38 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,25.
Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 24 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
105 | 0.2717 |
106 | 0.2539 |
107 | 0.2369 |
108 | 0.2206 |
109 | 0.2051 |
110 | 0.1903 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 96 Versuchen auch ungefähr 24 (≈0.25⋅96) Treffer auftreten.
Wir berechnen also mit unserem ersten n=96:
≈ 0.4609
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=110 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 110 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,15.
Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 37 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
272 | 0.2355 |
273 | 0.2279 |
274 | 0.2205 |
275 | 0.2132 |
276 | 0.2061 |
277 | 0.1992 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 247 Versuchen auch ungefähr 37 (≈0.15⋅247) Treffer auftreten.
Wir berechnen also mit unserem ersten n=247:
≈ 0.4692
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=277 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 277 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.