Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,45.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 38 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 84 | 0.5624 |
| 85 | 0.5232 |
| 86 | 0.4842 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.45 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 84 Versuchen auch ungefähr 38 (≈0.45⋅84) Treffer auftreten.
Wir berechnen also mit unserem ersten n=84:
≈ 0.5624
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=85 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,25.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 28 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 131 | 0.1441 |
| 132 | 0.1335 |
| 133 | 0.1235 |
| 134 | 0.114 |
| 135 | 0.1051 |
| 136 | 0.0968 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 112 Versuchen auch ungefähr 28 (≈0.25⋅112) Treffer auftreten.
Wir berechnen also mit unserem ersten n=112:
≈ 0.4638
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=136 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 136 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, mindestens 39 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 133 | 0.4002 |
| 134 | 0.3787 |
| 135 | 0.3577 |
| 136 | 0.3373 |
| 137 | 0.3174 |
| 138 | 0.2982 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 130 Versuchen auch ungefähr 39 (≈0.3⋅130) Treffer auftreten.
Wir berechnen also mit unserem ersten n=130:
≈ 0.467
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=138 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 138 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.
