Klasse 5-6
Klasse 7-8
Klasse 9-10
Kursstufe
cosh
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,45.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 39 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
75 | 0.9087 |
76 | 0.8889 |
77 | 0.8666 |
78 | 0.8417 |
79 | 0.8143 |
80 | 0.7846 |
81 | 0.7526 |
82 | 0.7188 |
83 | 0.6833 |
84 | 0.6464 |
85 | 0.6086 |
86 | 0.5702 |
87 | 0.5315 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.45 und variablem n.
Es muss gelten: ≥ 0.9
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 45% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 87 Versuchen auch ungefähr 39 (≈0.45⋅87) Treffer auftreten.
Wir berechnen also mit unserem ersten n=87:
≈ 0.5315
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=75 die gesuchte Wahrscheinlichkeit über 90% ist.
Binomialvert. mit vari. n (mind) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,35.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 34 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
110 | 0.1587 |
111 | 0.1432 |
112 | 0.1287 |
113 | 0.1154 |
114 | 0.1032 |
115 | 0.0921 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.35 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 35% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 97 Versuchen auch ungefähr 34 (≈0.35⋅97) Treffer auftreten.
Wir berechnen also mit unserem ersten n=97:
≈ 0.4661
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=115 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 115 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit vari. n (höchst.) (ohne Anwend.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 35 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
61 | 0.9 |
62 | 0.8736 |
63 | 0.8432 |
64 | 0.8091 |
65 | 0.7715 |
66 | 0.7307 |
67 | 0.6873 |
68 | 0.6418 |
69 | 0.595 |
70 | 0.5475 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.
Es muss gelten: ≥ 0.9
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 70 Versuchen auch ungefähr 35 (≈0.5⋅70) Treffer auftreten.
Wir berechnen also mit unserem ersten n=70:
≈ 0.5475
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=61 die gesuchte Wahrscheinlichkeit über 90% ist.