- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
- Kursstufe
- COSH
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 6€ betragen
- Der minimale Auszahlungsbetrag soll 4€ sein
- Der maximale Auszahlungsbetrag soll soll 10€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 4 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 4 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 4 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 4 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 4 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 4 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 4 | 5 | 7 | 10 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 1 | 4 |
P(X) = P(Y) | ||||
Winkel | 180° | 45° | 45° | 90° |
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1⋅ + 1⋅ + 4⋅
=
=
=
=
Faires Spiel - fehlende Auszahlung best.
Beispiel:
In einer Urne sind 8 Kugeln, die mit 4€ beschriftet sind, 6 Kugeln, die mit 20€ und 6 Kugeln, die mit 26€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 4 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 18,17€ fair wäre?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 4 | 20 | 26 | ? |
Zufallsgröße xi | 4 | 20 | 26 | x |
Zufallsgröße yi (Gewinn) | -14.17 | 1.83 | 7.83 | x-18.17 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-18.17) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 18.17
= 18.17
= 18.17= | |||
= | |⋅ 6 | ||
= | |||
= | | | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |⋅ 6 | ||
= | |||
= | | | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 32€