nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 4 (16) .

Lösung einblenden

Wir suchen den Logarithmus von 16 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 16 zu kommen.

Also was muss in das Kästchen, damit 4 = 16 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 (16) = 2, eben weil 42 = 16 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 10 ( 1 100.000.000 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 100.000.000 zur Basis 10, also die Hochzahl mit der man 10 potenzieren muss, um auf 1 100.000.000 zu kommen.

Also was muss in das Kästchen, damit 10 = 1 100.000.000 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 10-Potenz zu schreiben versuchen, also 10 = 1 100.000.000

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 10 ( 1 100.000.000 ) = -8, eben weil 10-8 = 1 100.000.000 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 5 ( 1 5 ) .

Lösung einblenden

Zuerst schreiben wir 1 5 um: 1 5 = 5 - 1 2

log 5 ( 1 5 ) = log 5 ( 5 - 1 2 ) heißt, dass wir den Logarithmus von 5 - 1 2 zur Basis 5 suchen, also die Hochzahl mit der man 5 potenzieren muss, um auf 5 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 5 = 5 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 5 ( 1 5 ) = log 5 ( 5 - 1 2 ) = - 1 2 , eben weil 5 - 1 2 = 1 5 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 2 (11) liegt.

Lösung einblenden

Wir suchen 2er-Potenzen in der Näher von 11, also eine die gerade noch kleiner und eine die schon größer als 11 ist.

Dabei kommt man auf 2 3 = 23 < 11 und auf 2 4 = 24 > 11.

Und da wir bei log 2 (11) ja das ☐ von 2 = 11 suchen, muss dieses ☐ irgendwo zwischen 3 und 4 liegen, wegen:
23 = 2 3 < 11 < 2 4 = 24

Es gilt somit: 3 < log 2 (11) < 4

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 100000 x ) -5 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 100000 x ) -5 lg( x )
= lg( 100000 ) - lg( x ) -5 lg( x )
= lg( 10 5 ) - lg( x ) -5 lg( x )
= 5 - lg( x ) -5 lg( x )
= -6 lg( x ) +5

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 40000 ) + lg( 25 ) .

Lösung einblenden

lg( 40000 ) + lg( 25 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 40000 · 25 )

= lg( 1000000 )

= lg( 10 6 )

= 6

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 2 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 2 )
= 2 lg( x )
= 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 50 x 7 ) + lg( 5 x 3 ) - lg( 250000 x 4 ) soweit wie möglich.

Lösung einblenden

lg( 50 x 7 ) + lg( 5 x 3 ) - lg( 250000 x 4 )

= lg( 50 x -7 ) + lg( 5 x 3 ) - lg( 250000 x -4 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 50 ) + lg( 1 x 7 ) + ( lg( 5 ) + lg( x 3 ) ) - ( lg( 250000 ) + lg( 1 x 4 ) )

= lg( 50 ) + lg( 1 x 7 ) + lg( 5 ) + lg( x 3 ) - lg( 250000 ) - lg( 1 x 4 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 50 ) -7 lg( x ) + lg( 5 ) +3 lg( x ) - lg( 250000 ) +4 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 50 ) -7 lg( x ) + lg( 5 ) +3 lg( x ) - lg( 250000 ) +4 lg( x )

= - lg( 250000 ) + lg( 50 ) + lg( 5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 250.000 · 50 · 5 )

= lg( 1 1000 )

= lg( 10 -3 )

= -3