nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 3 (81) .

Lösung einblenden

Wir suchen den Logarithmus von 81 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 81 zu kommen.

Also was muss in das Kästchen, damit 3 = 81 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 (81) = 4, eben weil 34 = 81 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 1 27 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 27 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 1 27 zu kommen.

Also was muss in das Kästchen, damit 3 = 1 27 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 3-Potenz zu schreiben versuchen, also 3 = 1 27

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 ( 1 27 ) = -3, eben weil 3-3 = 1 27 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 3 ( 3 ) .

Lösung einblenden

Zuerst schreiben wir 3 um: 3 = 3 1 2

log 3 ( 3 ) = log 3 ( 3 1 2 ) heißt, dass wir den Logarithmus von 3 1 2 zur Basis 3 suchen, also die Hochzahl mit der man 3 potenzieren muss, um auf 3 1 2 zu kommen.

Also was muss in das Kästchen, damit 3 = 3 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 3 ( 3 ) = log 3 ( 3 1 2 ) = 1 2 , eben weil 3 1 2 = 3 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 2 (92) liegt.

Lösung einblenden

Wir suchen 2er-Potenzen in der Näher von 92, also eine die gerade noch kleiner und eine die schon größer als 92 ist.

Dabei kommt man auf 2 6 = 26 < 92 und auf 2 7 = 27 > 92.

Und da wir bei log 2 (92) ja das ☐ von 2 = 92 suchen, muss dieses ☐ irgendwo zwischen 6 und 7 liegen, wegen:
26 = 2 6 < 92 < 2 7 = 27

Es gilt somit: 6 < log 2 (92) < 7

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 0,0001x ) +3 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 0,0001x ) +3 lg( x )
= lg( 0,0001 ) + lg( x ) +3 lg( x )
= lg( 10 -4 ) + lg( x ) +3 lg( x )
= -4 + lg( x ) +3 lg( x )
= 4 lg( x ) -4

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 40 ) + lg( 25 ) .

Lösung einblenden

lg( 40 ) + lg( 25 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 40 · 25 )

= lg( 1000 )

= lg( 10 3 )

= 3

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 2 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 2 )
= 2 lg( x )
= 2 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 25 x 3 ) - lg( 50 x 6 ) + lg( 2 x 2 ) soweit wie möglich.

Lösung einblenden

- lg( 1 25 x 3 ) - lg( 50 x 6 ) + lg( 2 x 2 )

= - lg( 1 25 x -3 ) - lg( 50 x 6 ) + lg( 2 x 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 25 ) + lg( 1 x 3 ) ) - ( lg( 50 ) + lg( x 6 ) ) + ( lg( 2 ) + lg( x 2 ) )

= - lg( 1 25 ) - lg( 1 x 3 ) - lg( 50 ) - lg( x 6 ) + lg( 2 ) + lg( x 2 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 25 ) +3 lg( x ) - lg( 50 ) -6 lg( x ) + lg( 2 ) +2 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 25 ) +3 lg( x ) - lg( 50 ) -6 lg( x ) + lg( 2 ) +2 lg( x )

= - lg( x ) - lg( 50 ) + lg( 25 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= - lg( x ) + lg( 1 50 · 25 · 2 )

= - lg( x ) + lg( 1 2 · 2 )

= - lg( x ) + lg( 1 )

= - lg( x )