nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (64) .

Lösung einblenden

Wir suchen den Logarithmus von 64 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 64 zu kommen.

Also was muss in das Kästchen, damit 2 = 64 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (64) = 6, eben weil 26 = 64 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 4 ( 1 16 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 16 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 1 16 zu kommen.

Also was muss in das Kästchen, damit 4 = 1 16 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 4-Potenz zu schreiben versuchen, also 4 = 1 16

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 ( 1 16 ) = -2, eben weil 4-2 = 1 16 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 4 ( 1 4 ) .

Lösung einblenden

Zuerst schreiben wir 1 4 um: 1 4 = 4 - 1 2

log 4 ( 1 4 ) = log 4 ( 4 - 1 2 ) heißt, dass wir den Logarithmus von 4 - 1 2 zur Basis 4 suchen, also die Hochzahl mit der man 4 potenzieren muss, um auf 4 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 4 = 4 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 4 ( 1 4 ) = log 4 ( 4 - 1 2 ) = - 1 2 , eben weil 4 - 1 2 = 1 4 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 3 (6) liegt.

Lösung einblenden

Wir suchen 3er-Potenzen in der Näher von 6, also eine die gerade noch kleiner und eine die schon größer als 6 ist.

Dabei kommt man auf 3 = 31 < 6 und auf 3 2 = 32 > 6.

Und da wir bei log 3 (6) ja das ☐ von 3 = 6 suchen, muss dieses ☐ irgendwo zwischen 1 und 2 liegen, wegen:
31 = 3 < 6 < 3 2 = 32

Es gilt somit: 1 < log 3 (6) < 2

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 100x ) + lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 100x ) + lg( x )
= lg( 100 ) + lg( x ) + lg( x )
= lg( 10 2 ) + lg( x ) + lg( x )
= 2 + lg( x ) + lg( x )
= 2 lg( x ) +2

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 500 ) + lg( 20 ) .

Lösung einblenden

lg( 500 ) + lg( 20 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 500 · 20 )

= lg( 10000 )

= lg( 10 4 )

= 4

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 4 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 4 )
= 4 lg( x )
= 4 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 1 1000 x 2 ) + lg( 20 x ) + lg( 5 x 3 ) soweit wie möglich.

Lösung einblenden

lg( 1 1000 x 2 ) + lg( 20 x ) + lg( 5 x 3 )

= lg( 1 1000 x -2 ) + lg( 20 x -1 ) + lg( 5 x 3 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 1 1000 ) + lg( 1 x 2 ) + ( lg( 20 ) + lg( 1 x ) ) + ( lg( 5 ) + lg( x 3 ) )

= lg( 1 1000 ) + lg( 1 x 2 ) + lg( 20 ) + lg( 1 x ) + lg( 5 ) + lg( x 3 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 1 1000 ) -2 lg( x ) + lg( 20 ) - lg( x ) + lg( 5 ) +3 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 1 ) - lg( 1000 ) -2 lg( x ) + lg( 20 ) - lg( x ) + lg( 5 ) +3 lg( x )

= - lg( 1000 ) + lg( 20 ) + lg( 5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 1000 · 20 · 5 )

= lg( 1 10 )

= lg( 10 -1 )

= -1