nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (128) .

Lösung einblenden

Wir suchen den Logarithmus von 128 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 128 zu kommen.

Also was muss in das Kästchen, damit 2 = 128 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (128) = 7, eben weil 27 = 128 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 10 ( 10 4 ) .

Lösung einblenden

Wir suchen den Logarithmus von 10 4 zur Basis 10, also die Hochzahl mit der man 10 potenzieren muss, um auf 10 4 zu kommen.

Also was muss in das Kästchen, damit 10 = 10 4 gilt.

Wenn wir jetzt die 10 4 als 10 1 4 umschreiben, steht die Lösung praktisch schon da: 10 = 10 1 4

log 10 ( 10 4 ) = 1 4 , eben weil 10 1 4 = 10 4 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 10 ( 1 10 ) .

Lösung einblenden

Zuerst schreiben wir 1 10 um: 1 10 = 10 - 1 2

log 10 ( 1 10 ) = log 10 ( 10 - 1 2 ) heißt, dass wir den Logarithmus von 10 - 1 2 zur Basis 10 suchen, also die Hochzahl mit der man 10 potenzieren muss, um auf 10 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 10 = 10 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 10 ( 1 10 ) = log 10 ( 10 - 1 2 ) = - 1 2 , eben weil 10 - 1 2 = 1 10 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 3 (5) liegt.

Lösung einblenden

Wir suchen 3er-Potenzen in der Näher von 5, also eine die gerade noch kleiner und eine die schon größer als 5 ist.

Dabei kommt man auf 3 = 31 < 5 und auf 3 2 = 32 > 5.

Und da wir bei log 3 (5) ja das ☐ von 3 = 5 suchen, muss dieses ☐ irgendwo zwischen 1 und 2 liegen, wegen:
31 = 3 < 5 < 3 2 = 32

Es gilt somit: 1 < log 3 (5) < 2

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 0,1x ) +4 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 0,1x ) +4 lg( x )
= lg( 0,1 ) + lg( x ) +4 lg( x )
= lg( 10 -1 ) + lg( x ) +4 lg( x )
= -1 + lg( x ) +4 lg( x )
= 5 lg( x ) -1

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: log 3 ( 18 ) - log 3 ( 2 ) .

Lösung einblenden

log 3 ( 18 ) - log 3 ( 2 )

Jetzt wenden wir das Logarithmusgesetz log( a b ) = log(a) - log(b) rückwärts an:

= log 3 ( 18 2 )

= log 3 ( 9 )

= log 3 ( 3 2 )

= 2

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 4 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 4 )
= 4 lg( x )
= 4 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 25 x 4 ) + lg( 1 500 x ) + lg( 2 x 5 ) soweit wie möglich.

Lösung einblenden

- lg( 1 25 x 4 ) + lg( 1 500 x ) + lg( 2 x 5 )

= - lg( 1 25 x -4 ) + lg( 1 500 x ) + lg( 2 x -5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 25 ) + lg( 1 x 4 ) ) + ( lg( 1 500 ) + lg( x ) ) + ( lg( 2 ) + lg( 1 x 5 ) )

= - lg( 1 25 ) - lg( 1 x 4 ) + lg( 1 500 ) + lg( x ) + lg( 2 ) + lg( 1 x 5 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 25 ) +4 lg( x ) + lg( 1 500 ) + lg( x ) + lg( 2 ) -5 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 25 ) +4 lg( x ) + lg( 1 ) - lg( 500 ) + lg( x ) + lg( 2 ) -5 lg( x )

= - lg( 500 ) + lg( 25 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 500 · 25 · 2 )

= lg( 1 10 )

= lg( 10 -1 )

= -1