nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 3 (9) .

Lösung einblenden

Wir suchen den Logarithmus von 9 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 9 zu kommen.

Also was muss in das Kästchen, damit 3 = 9 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 (9) = 2, eben weil 32 = 9 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 1 81 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 81 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 1 81 zu kommen.

Also was muss in das Kästchen, damit 3 = 1 81 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 3-Potenz zu schreiben versuchen, also 3 = 1 81

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 ( 1 81 ) = -4, eben weil 3-4 = 1 81 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 9 ( 3 ) .

Lösung einblenden

Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis 9 suchen und 9 gerade 3² ist (also 3 = 9 = 9 1 2 ), formen wir 3 noch so um, dass sie 9 als Basis hat:

3 = 9 1 2

log 9 ( 3 ) heißt, dass wir den Logarithmus von 3 = 9 1 2 zur Basis 9 suchen, also die Hochzahl mit der man 9 potenzieren muss, um auf 3 = 9 1 2 zu kommen.

Also was muss in das Kästchen, damit 9 = 3 = 9 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 9 ( 3 ) = log 9 ( 9 1 2 ) = 1 2 , eben weil 9 1 2 = 3 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 17 (266) liegt.

Lösung einblenden

Wir suchen 17er-Potenzen in der Näher von 266, also eine die gerade noch kleiner und eine die schon größer als 266 ist.

Dabei kommt man auf 17 = 171 < 266 und auf 17 2 = 172 > 266.

Und da wir bei log 17 (266) ja das ☐ von 17 = 266 suchen, muss dieses ☐ irgendwo zwischen 1 und 2 liegen, wegen:
171 = 17 < 266 < 17 2 = 172

Es gilt somit: 1 < log 17 (266) < 2

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 100000x ) -3 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 100000x ) -3 lg( x )
= lg( 100000 ) + lg( x ) -3 lg( x )
= lg( 10 5 ) + lg( x ) -3 lg( x )
= 5 + lg( x ) -3 lg( x )
= -2 lg( x ) +5

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 0,05 ) - lg( 50 ) .

Lösung einblenden

lg( 0,05 ) - lg( 50 )

Jetzt wenden wir das Logarithmusgesetz log( a b ) = log(a) - log(b) rückwärts an:

= lg( 0.05 50 )

= lg( 0,001 )

= lg( 10 -3 )

= -3

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term lg( x 3 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
lg( x 3 )
= 3 lg( x )
= 3 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 2 x 3 ) - lg( 1 4 x 4 ) + lg( 5x ) soweit wie möglich.

Lösung einblenden

- lg( 2 x 3 ) - lg( 1 4 x 4 ) + lg( 5x )

= - lg( 2 x -3 ) - lg( 1 4 x 4 ) + lg( 5x )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 2 ) + lg( 1 x 3 ) ) - ( lg( 1 4 ) + lg( x 4 ) ) + ( lg( 5 ) + lg( x ) )

= - lg( 2 ) - lg( 1 x 3 ) - lg( 1 4 ) - lg( x 4 ) + lg( 5 ) + lg( x )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 2 ) +3 lg( x ) - lg( 1 4 ) -4 lg( x ) + lg( 5 ) + lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 2 ) +3 lg( x ) - lg( 1 ) + lg( 4 ) -4 lg( x ) + lg( 5 ) + lg( x )

= lg( 5 ) + lg( 4 ) - lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 5 · 4 2 )

= lg( 10 )

= lg( 10 )

= 1