nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (256) .

Lösung einblenden

Wir suchen den Logarithmus von 256 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 256 zu kommen.

Also was muss in das Kästchen, damit 2 = 256 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (256) = 8, eben weil 28 = 256 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 2 ( 1 32 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 32 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 1 32 zu kommen.

Also was muss in das Kästchen, damit 2 = 1 32 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 2-Potenz zu schreiben versuchen, also 2 = 1 32

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 ( 1 32 ) = -5, eben weil 2-5 = 1 32 gilt .

log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 3 ( 1 3 ) .

Lösung einblenden

Zuerst schreiben wir 1 3 um: 1 3 = 3 - 1 2

log 3 ( 1 3 ) = log 3 ( 3 - 1 2 ) heißt, dass wir den Logarithmus von 3 - 1 2 zur Basis 3 suchen, also die Hochzahl mit der man 3 potenzieren muss, um auf 3 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 3 = 3 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 3 ( 1 3 ) = log 3 ( 3 - 1 2 ) = - 1 2 , eben weil 3 - 1 2 = 1 3 gilt .

log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 10 (7365) liegt.

Lösung einblenden

Wir suchen 10er-Potenzen in der Näher von 7365, also eine die gerade noch kleiner und eine die schon größer als 7365 ist.

Dabei kommt man auf 10 3 = 103 < 7365 und auf 10 4 = 104 > 7365.

Und da wir bei log 10 (7365) ja das ☐ von 10 = 7365 suchen, muss dieses ☐ irgendwo zwischen 3 und 4 liegen, wegen:
103 = 10 3 < 7365 < 10 4 = 104

Es gilt somit: 3 < log 10 (7365) < 4

1. Logarithmusgesetz einfach

Beispiel:

Vereinfache lg( 1000x ) -3 lg( x ) so, dass das Argument des Logarithmus möglichst einfach wird.

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
lg( 1000x ) -3 lg( x )
= lg( 1000 ) + lg( x ) -3 lg( x )
= lg( 10 3 ) + lg( x ) -3 lg( x )
= 3 + lg( x ) -3 lg( x )
= -2 lg( x ) +3

1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 0,03 ) - lg( 3 ) .

Lösung einblenden

lg( 0,03 ) - lg( 3 )

Jetzt wenden wir das Logarithmusgesetz log( a b ) = log(a) - log(b) rückwärts an:

= lg( 0.03 3 )

= lg( 0,01 )

= lg( 10 -2 )

= -2

2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term -2 lg( x 3 ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
-2 lg( x 3 )
= -6 lg( x )
= -6 lg( x )

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 20 x 4 ) + lg( 25 ) + lg( 1 500 ) soweit wie möglich.

Lösung einblenden

- lg( 1 20 x 4 ) + lg( 25 ) + lg( 1 500 )

= - lg( 1 20 x -4 ) + lg( 25 ) + lg( 1 500 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 20 ) + lg( 1 x 4 ) ) + ( lg( 25 ) + lg( 1 ) ) + ( lg( 1 500 ) + lg( 1 ) )

= - lg( 1 20 ) - lg( 1 x 4 ) + lg( 25 ) + lg( 1 ) + lg( 1 500 ) + lg( 1 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 20 ) +4 lg( x ) + lg( 25 ) +0 + lg( 1 500 ) +0

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 20 ) +4 lg( x ) + lg( 25 ) +0 + lg( 1 ) - lg( 500 ) +0

= 4 lg( x ) - lg( 500 ) + lg( 25 ) + lg( 20 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= 4 lg( x ) + lg( 1 500 · 25 · 20 )

= 4 lg( x ) + lg( 1 20 · 20 )

= 4 lg( x ) + lg( 1 )

= 4 lg( x )